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1 Smets and Wouters (2007) model

The linearized equations of the Smets and Wouters (2007) model are the following equations,
plus the monetary policy rule. Expectations are dropped for brevity.

1.1 Sticky price economy

Factor prices:
mct = αrt + (1− α)wt − εa,t (1)

rt = wt + lt − kst (2)

zt = 1−ψ
ψ
rt (3)

Investment:
it = 1

1+β̄γ

(
it−1 + β̄γit+1 + 1

γ2φ
qt

)
+ εi,t (4)

qt = σc(1+λ/γ)
1−λ/γ εb,t + 1−δ

1−δ+Rk qt+1 + Rk

1−δ+Rk rt+1 − rt + πt+1 (5)

Consumption decision:

ct = εb,t + λ/γ
1+λ/γ

ct−1 + 1
1+λ/γ

ct+1 + (σc−1)W ∗L∗/C∗

σc,(1+λ/γ)
(lt − lt+1)− 1−λ/γ

σc,(1+λ/γ)
(rt − πt+1) (6)

Resource constraint:
yt = ctcy + itiy + εg,t + ztzy (7)

Production function:
yt = φp (εa,t + αkst + (1− α) lt) (8)

kst = zt + kt−1 (9)

Evolution of capital:
kt = (1− ik) kt−1 + ikit + εi,t φ γ

2 ik (10)

Price and wage Philips curves:

πt = 1
1+β̄γ ιp

(
β̄γ πt+1 + ιp πt−1 +mct

(1−ξp) (1−β̄γ ξp)
ξp

1+(φp−1) εp

)
+ εp,t (11)

wt = w1wt−1+w2wt+1+w3πt−1−w4πt+w2πt+1+w5

(
σl lt +

1
1−λ/γ ct −

λ/γ
1−λ/γ ct−1 − wt

)
+εw,t (12)

where w1 = 1
1+β̄γ

, w2 = β̄γ
1+β̄γ

, w3 = ιw
1+β̄γ

, w4 = 1+β̄γ ιw
1+β̄γ

, and w5 =
(1−ξw) (1−β̄γ ξw)

(1+β̄γ) ξw
1

1+(φw−1) εw
.
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1.2 Flexible price economy

The corresponding equations defining the flexible price economy are:

εa,t = αrft + (1− α)wft (13)

rft = wft + lft − k
f
t (14)

zft = 1−ψ
ψ
rft (15)

kft = zft + kpft−1 (16)

ift = 1
1+β̄γ

(
ift−1 + β̄γ ift+1 + 1

γ2 φ
qft

)
+ εi,t (17)

qft = 1−δ
1−δ+Rk q

f
t+1 + Rk

1−δ+Rk rk
f
t+1 − rr

f
t + σc,(1+λ/γ)

1−λ/γ εb,t (18)

cft = εb,t + λ/γ
1+λ/γ

cft−1 + 1
1+λ/γ

cft+1 + (σc−1)W ∗L∗/C∗

σc,(1+λ/γ)

(
lft − l

f
t+1

)
− 1−λ/γ

σc,(1+λ/γ)
rrft (19)

yft = cft cy + ift iy + εg,t + zft zy (20)

yft = φp

(
εa,t + αkft + (1− α) lft

)
(21)

kp,ft = kp,ft−1 (1− ik) + ift ik + εi,t γ
2 φ ik (22)

wft = σll
f
t + 1

1−λ/γ c
f
t −

λ/γ
1−λ/γ c

f
t−1 (23)

1.3 Shocks

εa,t = ρa εa,t−1 + σa ηa,t (24)

εb,t = ρb εb,t−1 + σb ηb,t (25)

εg,t = ρg εg,t−1 + σg ηg,t + ηa,t σa ρga (26)

εi,t = ρi εi,t−1 + σi ηi,t (27)

εr,t = ρr εr,t−1 + σr ηr,t (28)

εp,t = ρp εp,t−1 + ηp,ma,t − µp ηp,ma,t−1 (29)

ηp,ma,t = σp ηp,t (30)

εw,t = ρw εw,t−1 + ηw,ma,t − µw ηw,ma,t−1 (31)

ηw,ma,t = σw ηw,t (32)

1.4 Measurement equations

dyt = γ̄ + yt − yt−1 (33)

dct = γ̄ + ct − ct−1 (34)

dit = γ̄ + it − it−1 (35)

dwt = γ̄ + wt − wt−1 (36)

πobst = π̄ + πt (37)
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robst = r̄ + rt (38)

lobst = l̄ + lt (39)

2 Solution methods

2.1 Binder and Pesaran (1995)

Consider a rational expectations model xt = Ψ (xt−1,Etxt+1, wt). Linearize the model around
a non-stochastic steady state to get:

Axt = C + Bxt−1 + DEtxt+1 + Fwt.

In an economy where all agents know the regime and expectations are formed under that
regime, the solution is a reduced-form VAR:

xt = J + Qxt−1 + Gwt.

where J, Q and G are conformable matrices which are functions of the structural matrices
A, B, C, D and F. As in Binder and Pesaran (1995) and Kulish and Pagan (2017), Q is
solved by iterating on the quadratic expression:

Q = [A−DQ]−1 B.

With Q in hand, we compute J and G with:

J = [A−DQ]−1 (C + DJ)

G = [A−DQ]−1 F.

2.2 Sims (2002)

The following is adapted from Cagliarini and Kulish (2013). Write a model in matrix form as:

Γ̃0yt = Γ̃1yt−1 + C̃ + Ψ̃εt, (40)

where the state vector is defined by and ordered according to:

yt =

 y1,t

y2,t

Etzt+1

 ,
and where y1,t is an (n1 × 1) vector of exogenous and some endogenous variables, and y2,t is
an (n2× 1) vector with those endogenous variables for which conditional expectations appear;
zt+1, (k× 1), where k = n2× s contains s leads of y2,t; in most models like Ireland (2004) and
Smets and Wouters (2007), however, zt+1 = y2,t+1 so that s = 1 and k = n2. The dimension
of yt is n × 1, where n = n1 + n2 + k. Also, we assume εt to be an l × 1 vector of serially
uncorrelated processes, Γ̃0 and Γ̃1 are (n1 + n2) × n matrices, C̃ is (n1 + n2) × 1 and Ψ̃ is
(n1 + n2)× l.
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Because of the presence of expectations, we cannot invert Γ̃ and estimate a reduced form
version of (40). Sims’s (2002) proposal is to append to (40) expectations revisions which will
be solved as part of the solution. Let ηt be the vector of expectations revisions:

ηt = Etzt − Et−1zt, (41)

where Etηt+j = 0 for j ≥ 1. For example, if zt = y2,t, then ηt are forecast revisions.
Augment the system defined by Equation (40) with the k equations from Equation (41)

to obtain:
Γ0yt = C + Γ1yt−1 + Ψεt + Πηt. (42)

where the matrices Γ0, Γ1,C,Ψ, and Π are of conformable dimensions. Γ0 is now an n× n
matrix, which we will invert with a Schur (QZ) decomposition, and impose conditions such
that we can remove the ηt from the system.

To solve (42) as Sims (2002), take a Schur (QZ) decomposition of (Γ0,Γ1) to get:

Q′ΛZ ′ = Γ0 and Q′ΩZ ′ = Γ1,

where Λ and Ω are both upper triangular. The matrices Q and Z are unitary, so that QQ′ = I
and ZZ ′ = I. Pre-multiply model equation by Q and define wt = Z ′yt to rewrite the system
as:

Λwt = Ωwt−1 +Q(C + Ψεt + Πηt).

Define w1,t = Z ′1yt and w2,t = Z ′2yt. Λ and Ω are upper triangular and have the property that
the generalized eigenvalues of (Γ0,Γ1) are ratios of diagonal elements of Ω and Λ. Rearrange
the system so that the explosive eigenvalues correspond to the lower right blocks of Λ and Σ,
partitioning wt and rewriting the system as:[

Λ11 Λ12

0 Λ22

] [
w1,t

w2,t

]
=

[
Ω11 Ω12

0 Ω22

] [
w1,t−1

w2,t−1

]
+

[
Q1

Q2

]
(C + Ψεt + Πηt).

The lower block of the system are those equations which correspond to the m explosive
generalised eigenvalues of (Γ0,Γ1). The lower set of equations are not affected by w1,t. Isolate
these:

Λ22w2,t = Ω22w2,t−1 +Q2 (C + Ψεt + Πηt) .

For stability of the system, we need ηt to offset the effect of εt on w2,t. To see this, first solve
w2,t forward to get:

w2,t = (Λ22 − Ω22)−1Q2C −
∞∑
j=1

(
Ω−1

22 Λ22

)j−1
Ω−1

22 Q2(Ψεt+j + Πηt+j).

This says that w2,t requires having in hand all future values of εt and ηt at time t. Take
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expectations of this expression at time t to get:

w2,t = (Λ22 − Ω22)−1Q2C − Et
∞∑
j=1

(
Ω−1

22 Λ22

)j−1
Ω−1

22 Q2Ψεt+j.

Also take expectations at time t+ 1 to get:

w2,t = (Λ22 − Ω22)−1Q2C − Et+1

∞∑
j=1

(
Ω−1

22 Λ22

)j−1
Ω−1

22 Q2Ψεt+j − Ω−1
22 Q2Πηt+1.

Note the left hand side has not changed, so equating these two expressions implies:

Q2Πηt+1 = Ω22

∞∑
j=1

(
Ω−1

22 Λ22

)j−1
Ω−1

22 Q2 (Etεt+j − Et+1εt+j) .

This says that for the system to be stable, the expectations revisions must offset the effect
that shocks εt have on the explosive component of the system, w2,t. Expectations revisions
ensure that the system is placed on the saddle path to stability. For this to be true, Sims
(2002) shows that what is required for a unique solution is that the number of explosive
eigenvalues of (Γ0,Γ1), m equals the number of variables which appear as expectations in the
system, k. Under this condition, the system is on a saddle path to a steady-state from any
initial condition. (Note, there are weaker conditions just for stability.) If this is true, and if
the solution is stable then there is a matrix Φ such that:

Q1Π = ΦQ2Π.

By premultiplying the system by [In−p,−Φ], the coefficient on ηt is:

Q1Π− ΦQ2Π.

Since existence of a solution requires Q1Π = ΦQ2Π, the ηt drop out of (40), so that a solution
to the model can be written as:

yt = S0 + S1yt−1 + S2εt + SyEt
∞∑
j=1

M j−1Ω−1
22 Q2Ψεt+j, (43)

where:

H = Z

[
Σ−1

11 −Σ−1
11 (Σ12 − ΦΣ22)

0 I

]
, S0 = H

[
Q1 − ΦQ2

(Σ22 − Ω22)−1Q2

]
C,

S1 = H

[
Ω11 Ω12 − ΦΩ22

0 0

]
, S2 = H

[
Q1 − ΦQ2

0

]
Ψ,

Sy = −H
[

0
Im

]
.

The solution (43) is in the desired var(1) form.
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2.3 Foreseen structural changes

Suppose the structural parameters of the economy are known to change into the future. In
particular, suppose the economy is expected to evolve with the following structure: in time
period t = 1, the economy starts with the following structure:

Γ̃0,1yt = Γ̃1,1y0 + C̃1 + Ψ̃1ε1,

and in time periods 2 ≤ t ≤ T , the structural parameters of the economy evolve according to:

Γ0,tyt = Γ1,tyt−1 + Ct + Πηt + Ψt (εut + εat ) ,

where εut are shocks which are unanticipated at time period t = 1, εat are shocks which are
anticipated at t = 1. In this implementation, expectations revisions are included as the
system evolves. Unanticipated shocks are added to show that it is possible to solve the
model subject to foreseen structural changes and unanticipated shocks, though the solution
would need to be computed each time period. Also notice that the matrices specifying the
structural parameters are time-varying. After time period T + 1, the structural parameters
of the economy are fixed, so that the system becomes:

Γ̄0yt = Γ̄1yt−1 + C̄ + Π̄ηt + Ψ̄εt.

Stacking T × (n1 + n2 + k) + m̃− k equations and imposing E1η2 = E1η3 = . . . = E1ηT = 0
(rational expectations) yields:

Γ̃0,1 0 . . . . . . 0

−Γ1,2 Γ0,2
. . . ...

0 −Γ1,3 Γ0,3
. . . ...

... . . . . . . . . . 0
0 . . . 0 −Γ1,T Γ0,T

0 . . . . . . 0 Z̄ ′2




y1

E1y2
...

E1yT

 =


C̃1 + Γ̃1,1y0 + Ψ̃1ε1

C2 + Ψ2ε
a
2

...
CT + ΨT ε

a
T

w̃2,T

 . (44)

More concisely:

AY = b.

The necessary condition to invert A is that the final (bar) structure of the economy has a
solution, which ensures the economy reaches its saddle path. In particular, Cagliarini and
Kulish (2013) show that uniqueness of final system is necessary for the intermediate path of
the economy to be unique.

Practically, Y = (y′1, . . . ,y
′
T ) is a T × (n1 + n2 + k) vector. As discussed in Sims (2002)

and in Section 2.2, a solution to the final system implies m̄ = k. This condition implies A is
a square matrix. Given uniqueness of the solution to the final system, it is necessary for A be
full rank for the path Y to be unique. This is generally the case unless perverse parameters
are used. The system can largely be unconstrained in the intermediate stage. If the system is
on a saddle path eventually, there is usually a unique path.
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3 Kalman filter and sampler

3.1 Kalman filter

The model in state space representation is:

xt = Jt + Qtxt−1 + Gtwt (45)
zt = Htxt. (46)

The error is distributed wt ∼ N(0,Q) where Q is the covariance matrix of wt. By assumption,
there is no observation error of the data given in the vector zt. The Kalman filter recursion is
given by the following equations, conceptualized as the predict and update steps. The state
of the system is (x̂t,Pt−1). In the predict step, the structural matrices Jt, Qt and Gt are
used to compute a forecast of the state x̂t|t−1 and the forecast covariance matrix Pt|t−1 as:

x̂t|t−1 = Jt + Qtx̂t

Pt|t−1 = QtPt−1Q
>
t|t−1 + GtQG>t .

This formulation differs from the time-invariant Kalman filter because in the forecast stage
the structural matrices Jt, Qt and Gt can vary over time. We update these forecasts with
imperfect observations of the state vector. This update step involves computing forecast
errors ỹt and its associated covariance matrix St as:

ỹt = zt −Htx̂t|t−1

St = HtPt|t−1H
>
t .

The Kalman gain matrix is given by:

Kt = Pt|t−1H
>
t S
−1
t .

With ỹt, St and Kt in hand, the optimal filtered update of the state xt is

x̂t = x̂t|t−1 + Ktỹt,

and for its associated covariance matrix:

Pt = (I −KtHt)Pt|t−1.

The Kalman filter is initialized with x0 and P0 determined from their unconditional moments,
and is computed until the final time period T of data.

3.2 Kalman smoother

With the estimates of the parameters and durations in hand at time period T , the Kalman
smoother gives an estimate of xt|T , or an estimate of the state vector at each point in time
given all available information (see Hamilton, 1994). With x̂t|t−1, Pt|t−1, Kt and St in hand
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from the Kalman filter, the vector xt|T is:

xt|T = x̂t|t−1 + Pt|t−1rt|T ,

where the vector rT+1|T = 0 and is updated with the recursion:

rt|T = H>t S
−1
t

(
zt −Htx̂t|t−1

)
+ (I −KtHt)

>P>t|t−1rt+1|T .

Finally, to get an estimate of the shocks to each state variable, denoted by et, we compute:

et = Gtwt = Gtrt|T .

From these, we get an estimate of the structural shocks used to compute counterfactuals with
the model.

3.3 Sampler

This section describes the sampler used to construct an estimate of the posterior distributions.
Denote by ϑ the vector of parameters to be estimated, U the vector of breaking structural
parameters (trend growth), and T the vector of durations to be estimated. Denote by
z = {zτ}Tτ=1 the sequence of observable vectors. The posterior P(ϑ,U,T | z) satisfies:

P(ϑ,U,T | z) ∝ L(z | ϑ,U,T)× P(ϑ,U,T).

With Gaussian errors, the likelihood function L(z | ϑ,U,T) is computed using the appropriate
sequence of structural matrices and the Kalman filter:

logL(z | ϑ,U,T) = −
(
NzT

2

)
log 2π − 1

2

T∑
t=1

log detHtStH
>
t −

1

2

T∑
t=1

ỹ>t
(
HtStH

>
t

)−1
ỹt.

The prior is simply computed using priors over ϑ which are consistent with the literature,
and with flat priors on U and T.1

The Markov Chain Monte Carlo posterior sampler has three blocks, corresponding to
ϑ, U and T. Initialize the sampler at step j with the last accepted draw of the structural
parameters, the period of the breaking parameters and durations, denoted by ϑj−1, Uj−1 and
Tj−1 respectively. The three blocks are, in order of computation:

1. In the first block, propose a new Uj by randomly choosing a date between [T1, T2],
where T1 and T2 are the bounds of the interquartile range of the sample. With Uj,
recompute the sequence of structural matrices associated with (ϑj−1,Uj,Tj−1), com-
pute the posterior P(ϑj−1,Uj,Tj−1 | z), and accept (ϑj−1,Uj,Tj−1) with probability
P(ϑj−1,Uj ,Tj−1|z)

P(ϑj−1,Uj−1,Tj−1|z)
. If (ϑj−1,Uj,Tj−1) is accepted, then set Uj−1 = Uj.

2. In the second block, randomly choose up to T̄ durations to test, corresponding to up
to T̄ time periods that the economy is at the ZLB. For each of those time periods,

1I require the structural break date to lie in the interquartile range of the sample to avoid issues of
erroneous errors found in short samples, and I require that each estimated duration lies below some maximum
value T ∗ which, in practice, is rarely visited by the sampler.
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randomly choose a duration in the interval [1, T ∗] and mix that value with the previously
accepted draw to generate a new Tj proposal. As with the first block, recompute the
sequence of structural matrices associated with (ϑj−1,Uj−1,Tj), compute the poste-
rior P(ϑj−1,Uj,Tj−1 | z), and accept the proposal (ϑj−1,Uj−1,Tj) with probability
P(ϑj−1,Uj−1,Tj |z)

P(ϑj−1,Uj−1,Tj−1|z)
. If (ϑj−1,Uj−1,Tj) is accepted, then set Tj−1 = Tj.

3. The third block is a more standard Metropolis-Hastings random walk step. First
start by selecting which structural parameters to propose a new value for. For those
parameters, draw a new proposal ϑj from a proposal density centered at ϑj−1 and with
thick tails to ensure sufficient coverage of the parameter space and an acceptance rate
of roughly 20%. The proposal ϑj is accepted with probability P(ϑj ,Uj−1,Tj−1|z)

P(ϑj−1,Uj−1,Tj−1|z)
. If

(ϑj,Uj−1,Tj−1) is accepted, then set ϑj−1 = ϑj.

3.4 Data

I use the same data sources and construction as Smets and Wouters (2007). For wages, I
use the nonfarm business sector real compensation per hour, with code COMPRNFB on the
Federal Reserve Economic Database.

4 A worked example of the algorithm

Consider the simple example, log-linearized around steady-state where yt is output and the
nominal interest rate it ignores the ZLB:

yt = Etyt+1 − (it − ī) + εt

it − ī = ρ (it−1 − ī) + γyt.

Putting this model in the form of (40) requires yt = [ it yt Etyt+1 ]′ and:

Γ̃0 =

[
1 1 −1
1 −γ 0

]
, Γ̃1 =

[
0 0 0
ρ 0 0

]
, C̃ =

[
ī

ī(1− ρ)

]
, Ψ̃ =

[
1
0

]
.

Adding expectations revisions requires appending a single equation:

ηt = yt − Et−1yt.

The matrices become:

Γ0 =

 1 1 −1
1 −γ 0
0 1 0

 , Γ1 =

 0 0 0
ρ 0 0
0 0 1

 , C̃ =

 ī
ī(1− ρ)

0

 , Ψ̃ =

 1
0
0

 ,
and Π = [ 0 0 1 ]′. The routines of Sims (2002) are used to obtain the linear system:

yt = S0 + S1yt−1 + S2εt. (47)

The algorithm proceeds as follows. Given a shock εt:
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1. Using the reduced form system without the ZLB (47), obtain the path yt up to some large
T . Assume no future shocks:

yt = S0 + S1yt−1 + S2εt

yt+1 = S0 + S1yt
...

yT = S0 + S1yT−1.

2. Examine {iτ}Tτ=t. If iτ > 0 ∀ τ , then stop the algorithm. Otherwise, move to the next
step.

3. Find the first time period where iτ < 0. Suppose it+1 < 0 under the shock εt. Then, we
want the following system to apply at time period t+ 1:

yt = Etyt+1 − (it − ī) + εt

it = 0,

and the non-ZLB system to apply for t and time periods τ > t+ 1. The system at t+ 1
translates into the following structural matrices:

Γ∗0,t+1 =

 1 1 −1
1 0 0
0 1 0

 , Γ∗1,t+1 =

 0 0 0
0 0 0
0 0 1

 , C∗t+1 =

 ī
0
0

 , Ψ∗t+1 =

 1
0
0

 ,
while Π∗t+1 = Π. We now put these structural matrices in place in the format of (44): Γ̃0 0

−Γ∗1,t+1 Γ∗0,t+1

0 Z̃ ′2

[ yt
Etyt+1

]
=

 C̃ + Γ̃1yt−1 + Ψ̃εt
C∗t+1

w̃2

 , (48)

where Z̃ ′2 and w̃2 are the matrices defined in section 2.2 associated with the solution to
the non-ZLB system. Invert (48) to obtain yt and yt+1. Then use the solution to the
non-ZLB system to obtain yt+j for j > t+ 1 again assuming no future shocks.

Return to step 2 with the the new path of {iτ}Tτ=t.

4. Examine the new path of {iτ}Tτ=t. If iτ > 0 ∀ τ , then stop the algorithm: the ZLB applies
only for time period t+ 1. Otherwise, move to the next step having already imposed the
ZLB at time period t+ 1.

5. Find the new first time period where iτ < 0. Suppose it < 0 under the shock εt with
it+1 = 0. This could happen as the imposition of it+1 = 0 is a contactionary monetary
policy relative to it+1 < 0. Then, we want the following system to apply at t:

yt = Etyt+1 − (it − ī) + εt

it = 0,

and the non-ZLB system to apply for time periods τ > t+ 1. The system at t translates
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into the following structural matrices:

Γ̃∗0 =

[
1 1 −1
1 0 0

]
, Γ̃∗1 =

[
0 0 0
0 0 0

]
, C̃∗ =

[
ī
0

]
, Ψ̃∗t =

[
1
0

]
,

Again, putting these structural matrices in place in the format of (44): Γ̃∗0 0
−Γ∗1,t+1 Γ∗0,t+1

0 Z̃ ′2

[ yt
Etyt+1

]
=

 C̃∗ + Γ̃∗1yt−1 + Ψ̃εt
C∗t+1

w̃2

 .
And so, invert the LHS matrix to obtain the path of the model variables during the ZLB
episode including the path of the nominal interest rate. Now the ZLB applies for two
periods.

6. Continue iterating until the nominal interest rate satisfies the ZLB across the forecast
horizon.

5 Result 1

Result 1. If there are n distinct equations for n variables in the linearized model (??) under
the non-ZLB regime and the Blanchard-Kahn conditions are satisfied for the linearized model
under the non-ZLB regime, then the path during the ZLB period exists and is unique.

Given the discussion in section 2.3, Result 2 involves checking the rank of the A matrix of
equation (44). In particular, we need that the rank of A is n× T . Without loss of generality,
take the case where T = 3:

A =


Γ̃0,1 0 0
−Γ1,2 Γ0,2 0

0 −Γ1,3 Γ0,3

0 0 Z̄ ′2

 .
Uniqueness of the final solution implies the rank of Z̄ ′2 = k. From our assumption that there
are n1 + n2 unique equations of the original system, appending k expectations revisions to
the system ensures there are n = n1 + n2 + k unique equations to the non-ZLB system. And
so, if all that has changed is that the interest rate rule is now specified to force the nominal
interest rate to the zero, then we have:

rank
([
−Γ1,2 Γ0,2 0

0 −Γ1,3 Γ0,3

])
= 2n.

It remains to argue that the final set of equations [ 0 0 Z̄ ′2 ] cannot contain an equation
which is a linear combination of the equations in [ 0 −Γ1,3 Γ0,3 ]. To see that this is the
case, suppose that indeed there is an equation in [ 0 0 Z̄ ′2 ] that is a linear combination
of the equations in [ 0 −Γ1,3 Γ0,3 ]. Then we have that E3y2,4 is defined in terms of y1,3

and y2,3 in the same way as implied by the system under the ZLB regime. In our application
of the ZLB, this implies that there are some expectations that behave the same way as the
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structure when the interest rate is held constant. But this is not consistent with the final
system implying a unique and determinate solution. Therefore, rank(A) = 3× T , as needed
for A to be invertible.

6 Illustration of algorithm with the three equation New
Keynesian model

The example in this section illustrates the algorithm and the identification method in a
simulation of a simple model where known forward guidance policies are specified.

6.1 The model

The log-linearized economy is summarized by the following three equations, where it is the
nominal interest rate, yt is detrended output and πt is the rate of inflation. There are three
autoregressive shocks, to permanent technology zt, to demand ξt and to the pricing equation
at. There is a monetary policy shock εi,t when the interest rate is positive. All variables are
expressed as deviations from their steady-state values. The equations are, first, the Euler
equation:

yt = Et[yt+1]− (it − Et[πt+1]) + (1− ρξ)ξt, (49)

second, the pricing equation:

πt = βEt[πt+1] + κ[yt − at], (50)

and third, the policy rule, subject to the ZLB:

it = max {−iss, ρiit−1 + φππt + φg(yt − yt−1 + zt) + εi,t} . (51)

Since it is expressed as a deviation from steady-state, the ZLB binds when it = −iss where
iss = πz

β
, with π∗ and z∗ being the inflation target and steady-state permanent rate of

technology growth. The markup shock is autoregressive:

at = ρaat−1 + εa,t,

as is the shock to technology:
zt = ρzzt−1 + εz,t,

and the demand shock:
ξt = ρξξt−1 + εξ,t.

6.2 Simulation

The model is calibrated to values that reflect the estimated parameters in analogous New
Keynesian models (as in, for example, Ireland, 2004). The following table gives the baseline
calibration.

β z π κ ρi φπ φg ρa ρz ρξ σξ σa σi σz

.99 1.0025 1.011/4 .2 .8 1.7 .1 .8 .2 .8 .04 .01 .003 .01
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The inflation target is set to 1 per cent to lower the steady-state nominal interest rate
and make the ZLB more likely to be visited. Demand and pricing shocks are relatively
more persistent than technology shocks and demand shocks are large compared to the other
disturbances. Monetary policy reacts stronger to deviations in inflation from target as
compared to the growth rate of output.

Figure 1 plots a simulated series of the interest rate, inflation and output generated by
the model and a random set of shocks. The figure plots three series. The series labelled
‘endogenous durations’ is the series that transpires under the ZLB algorithm if the nominal
interest rate was simply constrained by the ZLB, and becomes positive as soon as the policy
rule requires it. The series labelled ‘no ZLB’ is the simulated series where the ZLB is
unconstrained. I plot the unconstrained path as a comparison to the third series labelled
‘forward guidance’, which is the simulated path where the central bank announces and
commits to a path for the interest rate at zero for a period of time. The path the central
bank commits to, as summarized by a sequence of anticipated durations, is illustrated in
Figure 2 and discussed below.

This particular set of shocks drives the nominal interest rate to the ZLB in period 13 and
keeps it there until period 16. In period 17, the shocks lead the central bank to raise the
interest rate, but it hovers around zero until period 22. Under the forward guidance path,
the interest rate stays at zero until period 19 and returns to the ZLB for a single period at
period 21. The decline in output and inflation is much more pronounced in the endogenous
durations path as compared to the path under active forward guidance.

The durations that agents in the model expect the ZLB to bind at each period are plotted
in Figure 2. The first panel shows the anticipated durations for the endogenous durations
case. The shocks keep the anticipated duration at 2 periods in both periods 14 and 15. This
stability in the anticipated duration corresponds to a decline in inflation and output from
period 14 to period 15, so that this particular sequence of shocks pushes out the ex-post ZLB
exit date by one period.

The second panel of Figure 2 shows the anticipated durations under the forward guidance
policy. The central bank announces that it will abandon its policy rule for the specified
duration and credibly commit to holding the nominal interest rate at zero for that duration.
This announcement could, in practice, take any value. However, if the announced path is less
than or the same as the endogenous duration, the announcement has no aggregate effects
because the announcement confirms agents’ expectations of the ZLB duration. Furthermore,
to ensure an announcement policy is time-consistent, if the central bank commits to a
particular duration T , then in the next time period I require it to commit to a duration
which is at least as high as T − 1. While in some sense arbitrary, the forward guidance
values chosen for this exercise can be rationalized with a policy rule which activates when
the interest rate becomes zero and which is tied to the rate of inflation that would arise in
the absence of forward guidance policies. An example rule with this feature is outlined and
studied in section ??.

6.3 Illustrating the decomposition

The aggregate consequences of forward guidance announcements, as plotted in Figure 1,
illustrates how the anticipated duration series is a crucial variable when the interest rate is
at zero. Under the forward guidance path, both output and inflation lie well above the paths
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that arise when no forward guidance is used. Information on the ZLB durations together with
the observable variables can be submitted to the ZLB algorithm to identify how stimulatory
those announcements are in practice.

To illustrate this, assume we observe the interest rate, inflation and output series under
the ‘forward guidance’ series, and we estimate the anticipated ZLB durations under these
series. Suppose the procedure perfectly estimates the parameters and the ZLB durations, so
that they exactly equal the durations shown in the second panel of Figure 2. The smoother
provides an estimate of the structural shocks {wτ}Tτ=1. Using the estimated structural shocks,
the model and the ZLB algorithm, the third panel of Figure 2 illustrates the estimated ZLB
durations as decomposed into the component due to structural shocks and the component due
to active forward guidance policy. The identification procedure finds that forward guidance
contributed an additional two periods to each duration from time periods 13 to 17, and an
additional period in time period 18.

Figure 3 illustrates the identification procedure period-by-period. The first time period
the ZLB binds is in period 13, plotted in the first panel. At this period, the estimated
duration is five periods. Also plotted is the forecast of the interest rate that is implied by the
state xt−1 and structural shock wt at time period 13, labelled the ‘shadow rate’. The duration
is at zero for two periods longer than the shadow rate is at zero, so that the identified forward
guidance component is two periods. Most strikingly, in time period 17, the shadow rate is
positive for the two periods that the ZLB is estimated to bind.

The example simulation makes it clear that the identified endogenous duration is not
simply the difference between durations that arise when there is no forward guidance and
the durations that arise under forward guidance (or the first two panels of Figure 2). This is
because each announced duration under forward guidance changes the state vector at that
period, and the different path of the state vector could change the endogenous binding of
the ZLB. This is why, in the simulation, the ZLB also binds for one period endogenously in
period 21–because the interest rate was kept at zero for longer under the forward guidance
simulation, the desire of the central bank to smooth interest rates keeps it closer to zero
relative to the no forward guidance simulation, so that a deflationary shock is more likely to
make the ZLB bind after t = 18.

7 Comparison to non-linear approximation

To show that the method provides a good approximation, here I compare the output of the
algorithm to a non-linear approximation of a simplified version of the Ireland (2004) economy.
The non-linear model solved consists of an equation relating consumption ct to output yt and
includes a term for price adjustments costs:

yt = ct +
φ

2

(πt
π
− 1
)2

yt,

where πt is the inflation rate. The Euler equation is:

1

β

1

it

at
ct

= Et
[
at+1

ct+1

1

πt+1

]
,
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where it is the gross nominal interest rate, at is a demand shock, and zt is a permanent
productivity shock, and an equation derived from intermediate goods producing firms optimal
price adjustment:

Et
[
at+1

at

yt+1

ct+1

(πt+1

π
− 1
) πt+1

π

]
=

1

βφ

yt
ct

[
θt − 1− θt

(
ct
at

)
yη−1
t + φ

(πt
π
− 1
) πt
π

]
,

where θt is a shock to intermediate goods producing firms’ desired markup. The central bank
follows a Taylor rule. The ZLB on the gross nominal interest rate requires it > 1, so the rule
becomes:

it = max
[
1, πρπt g

ρg
t x

ρx
t

]
,

where gt is the growth rate of output from t− 1 to t:

gt =
yt
yt−1

zt,

and xt is the efficient level of output:

xt =
yt

a
1/η
t

.

The demand shocks follows an autoregressive process:

ln(at) = (1− ρa) ln(a) + ρa ln(at−1) + εa,t.

The two state variables of the model are at−1 and yt−1. To approximate the solution, I
follow the exposition of Fernández-Villaverde et al. (2012). I first discretize at with a Tauchen
approximation. The solution will be in terms of two functions f1(yt−1, at) and f2(yt−1, at) which
approximate the expectations given by 1

β
1
it
at
ct

and at
βφ

yt
ct

[
θ − 1− θ

(
ct
at

)
yη−1
t + φ

(
πt
π
− 1
)
πt
π

]
respectively. First, I constrain yt−1 to lie between 0.95 and 1.05 times the steady-state value
of y. Together with the discretized at, this gives a grid {y, a}. I use the guess-and-verify
method to approximate the policy functions across that grid. The algorithm is:

1. Guess the values of f1(si) and f2(si) at each point si ∈ {y, a}. Call these guesses f̂1(si)
and f̂2(si).

2. Using the guesses f̂1(si) and f̂2(si):

for each i (for each state):

Guess πt . Using the guess for πt:

(a) Determine the ratio ct
yt
.

(b) Using the ratio ct
yt

and the guess f̂2(si), obtain yt.

(c) Using yt, obtain ct, at, gt and then it, where it is calculated subject to it = 1.

(d) Using f̂1(si) and it, compute the implied consumption and call it c̃t.

Check the computed c̃t against ct. Update guess of πt until |c̃t − ct| converges.
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3. With the equilibrium policy functions at time t, compute the expectations:

Et
[
at+1

ct+1

1

πt+1

]
and Et

[
at+1

yt+1

ct+1

(πt+1

π
− 1
) πt+1

π

]
,

using the transition matrix for the discretized θt. Adjust the guesses f̂1(si) and f̂2(si)
until they converge with the computed f1(si) and f2(si).

The algorithm approximates policy functions for all the endogenous variables.
I use the following calibration, which mirrors the calibrated and estimated results of

Ireland (2004). The inflation target is set to 1 per cent per year so that the ZLB is more
likely to bind following a negative demand shock.

β φ η ρπ ρg ρx ρa σa θ π

0.99 200 1/0.06 2.5 0.3 0.1 0.7 0.02 0.1φ
η

+ 1 1.011/4

Figure 4 compares the impulse response to a large negative five standard deviation demand
shock under the non-linear approximation and the ZLB algorithm. Both methods have similar
profiles for output growth and inflation, and show that the ZLB binds for two periods following
the shock.

Figure 5 shows the two approximations have similar predictions for the stochastic paths
of endogenous variables under 1000 simulations using the same set of shocks for both
approximations.

7.1 Severity of shocks at the ZLB

I use the implementation to analyse the severity of shocks when the nominal interest rate is
at the ZLB. Figure 1 showed that, when the central bank cannot stabilize a large negative
demand shock pushing the nominal interest rate to its lower bound, the inflation and output
decline is pronounced. I investigate this further in Figure 6 by plotting the initial response of
inflation following demand (ξt) shocks of varying size. The non-stochastic response is the
bold black line. Also plotted are fancharts for the range of the initial response when the
economy is subject to random shocks to the other stochastic variables.

For the region in which the ZLB does not bind, the initial response is linear. Beyond
large, negative demand shocks, the ZLB binds and the decline in inflation and output is more
severe with more negative shocks. The width of the fanchart also widens for both inflation
and output when the ZLB binds. To make this clear, Figure 7 plots a normalized measure of
the width of the bands around the initial response in Figure 6. This exercise illustrates how,
when the central bank is constrained and unable to act against the shock with the nominal
interest rate, the effect of unanticipated stochastic shocks is large. This is intuitive: policy
functions for inflation and output are steeper at the ZLB relative to when the central bank
can stabilize contractionary demand shocks, and so further shocks that impact when the
nominal rate is at that bound moves the economy along those steeper functions.

To illustrate the severity of shocks which impact the economy at the ZLB over time,
Figure 8 plots fancharts summarizing the range of the interest rate, inflation and output
growth across 100 simulations of the model when the interest rate is subject to the ZLB,
and for when it is not subject to the ZLB. The shocks are such that the economy is subject
to three consecutive quarters of unanticipated negative two standard deviation risk premia
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AD/AS under ZLB

πt

gt

ASAD

shocks, in addition to random shocks. This pushes the nominal interest rate to its ZLB for an
extended period. The black line gives the economy’s path under three consecutive quarters
of negative two standard deviation risk premia shocks and absent further stochastic shocks.
The fancharts illustrate how, when the ZLB binds, some paths are particularly variable, so
that the overall variance of inflation and output growth rises over the simulation period when
compared to the variance in the no-ZLB simulation.

The figure below illustrates the aggregate demand (AD) and aggregate supply (AS) curves
in the inflation-output growth space under the ZLB,2 and motivates why shocks can increase
the volatility of inflation and output growth, as a given shock affects inflation and output
growth differently depending on whether the equilibrium lies on the sloped or vertical segment
of the AD curve. The vertical component of the AD curve arises because monetary policy
cannot manipulate the real interest rate when it is constrained by the ZLB. A given shift in
the AS curve along the vertical component of AD can cause inflation to be more volatile,
while a given shift in the AD curve when the equilibrium lies in the vertical component of
the AD curve can cause both inflation and output growth to be more volatile.

2See the next section for the derivation of these curves in the three-equation New Keynesian model. If
derived in the space of expected inflation Etπt+1 and output as in Wieland (2014) the AD curve would be
upward sloping in the ZLB region.
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8 Aggregate demand and supply under ZLB

In this section, I derive the three equation New Keynesian model in the AD and AS framework
as in Jones and Kulish (2016) but with the ZLB. Define output growth:

gt = yt − yt−1 + zt. (52)

To find the AS schedule, substitute equation (52) into (50) to get:

πt = κgt + st + (π − κg), (53)

where st = βEtπt+1 + κyt−1 − κzt − κat. In the space of contemporanous output growth and
inflation (gt, πt), equation (53) expresses inflation as a linear function of output growth, with
slope κ and intercept st + (π − κg). Note that the time-varying component of the intercept
st is zero when the economy is on its growth path. Also note that the slope of the curve
depends on the degree of nominal price rigidities. That is, as κ → ∞ prices become fully
flexible implying a vertical AS. Conversely as the cost of price adjustment rises, κ→ 0, so
that AS flattens.

To obtain the AD schedule when the ZLB does not bind, substitute equations (51) and
(52) into (49) to get:

πt = −
(

1+ψg
ψπ

)
gt + dt +

(
π +

(
1+ψg
ψπ

)
g
)
, (54)

where ψπdt = −ρiit−1 + Etyt+1 + Etπt+1 − yt−1 + zt + (1− ρξ)ξt − εi,t. Note that, as for the
time-varying intercept in the AS curve, when the economy is on its balanced growth path, dt
is zero. The slope of the curve (54) depends on the parameters of the policy rule. A greater
response to deviations of inflation from target, ψπ, flattens the curve. Vice versa, stronger
responses to output growth, ψg, steepen the AD curve. The central bank uses changes in the
nominal interest rate to affect growth and stabilize the inflation rate around the target.

The AD and AS curves reveal that shocks move both schedules simultaneously and so, to
determine the overall effect of the shocks on πt and gt, we find their intersection. With the
values of st and dt in hand, the AS curve (53) and the AD curve (54) can be written as a
system of two equations in two variables gt and πt. Inverting these equations:[

πt
gt

]
=

[
π + κψπ

1+ψg+κψπ
dt + 1+ψg

1+ψg+κψπ
st

g + ψπ
1+ψg+κψπ

dt − ψπ
1+ψg+κψπ

st

]
. (55)

Now suppose the ZLB binds. The AD curve changes, while the AS curve is unchanged. To
derive the new AD curve, notice that the rule (51) says that, at the ZLB, the parameters of
the rule are equal to zero. This says the AD curve becomes vertical at a level of gt determined
by substituting (51) with the constraint binding, and (52) into (49) to get:

gt = d̃t + g,

where d̃t = −iss + Etyt+1 + Etπt+1 − yt−1 + zt + (1 − ρξ)ξt. The vertical component of the
AD curve says that when the ZLB binds, the central bank cannot engineer an expansion of
output by lowering the nominal interest rate.
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To determine inflation and output growth at an equilibrium where the ZLB binds, write
the AD and AS equations in inflation and output growth space, and solve:[

πt
gt

]
=

[
π + st + κd̃t

g + d̃t

]
. (56)

Comparing (55) with (56) reveals that shocks to et, at and zt move both AD and AS
simultaneously, directly through the shock and indirectly through expected inflation and
output.
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Figure 1: Simulation. This figure shows the interest rate, inflation, and output under a set
of random shocks, when the interest rate is subject to the ZLB (without forward guidance),
when there is no ZLB imposed, and when the central bank announces a sequence of interest
rate ZLB durations above those implied endogenously by the shocks.
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Figure 2: Estimated and decomposed durations. The top two panels of this figure
show the anticipated durations of the ZLB in the ‘endogenous durations’ (no forward guidance)
and ‘forward guidance’ simulations. The third panel shows the outcome of the identification
procedure using the forward guidance durations.
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Figure 3: Interest rates during the ZLB episode. The figure shows, from time periods
13 to 18, forecasts of the interest rate under the estimated duration, and forecasts of the
shadow interest rate. Forward guidance is active when the shadow rate forecast lies above
the path under the estimated duration.
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Figure 4: Comparison of ZLB algorithm and non-linear approximation. This figure
plots the impulse response to a negative five standard deviation demand shock.
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Figure 5: Comparison of ZLB algorithm and non-linear approximation over time.
This figure plots fancharts for 1000 simulations of the log-linear and non-linear approximations
under the same set of demand shock.
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Figure 6: Initial response of variables to εξ,t shocks. This figure shows the initial
responses of inflation, the nominal interest rate and output in response to demand shocks of
varying size. The fanchart illustrates the band of the initial response when the economy is
hit by other stochastic shocks.
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Figure 7: Standard Deviation of initial response of interest rate, inflation and
output growth. The standard deviations of the interest rate, inflation and output growth are
normalized by their respective standard deviations for εξ = 0. The figure plots a normalized
measure of the width of the fancharts around the initial responses of inflation, output growth
and the interest rate, plotted in Figure 6.
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Figure 8: Unanticipated shocks each period. This figure plots fancharts of 100 simu-
lations of the model economy when the ZLB binds and when it does not. Under the ZLB,
the fancharts are wider, illustrating how shocks which hit at the ZLB can generate excess
volatility.
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