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Abstract

Existing menu cost models, when parameterized to match the micro-price

data, cannot reproduce the extent to which the fraction of price changes in-

creases with inflation. In addition, in the presence of strategic complementar-

ities, they predict implausibly large menu costs and misallocation. We resolve

these shortcomings using a multi-product menu cost model that features two

key ingredients. First, the products sold by a firm are imperfect substitutes.

Second, strategic complementarities are at the firm, not product level. In con-

trast to existing models, the fraction of price changes increases rapidly with the

size of monetary shocks, so our model implies a non-linear Phillips curve.

Keywords: menu costs, inflation, Phillips curve.

∗We thank Audrey Azerot and Man Chon Iao for superb research assistance, Qazi Haque, Ernesto
Pasten, Francisca Sara-Zaror and Ludwig Straub for valuable discussions, as well as Fernando Al-
varez, Francesco Lippi and Mark Gertler for useful feedback. The views expressed are those of the
authors and not necessarily those of the Atlanta Fed or the Federal Reserve Board.

†Federal Reserve Bank of Atlanta, julioablanco84@gmail.com.
‡New York University and NBER, corina.boar@nyu.edu.
§Federal Reserve Board, callum.j.jones@frb.gov.
¶New York University and NBER, virgiliu.midrigan@nyu.edu.

mailto:julioablanco84@gmail.com
mailto:corina.boar@nyu.edu
callum.j.jones@frb.gov
virgiliu.midrigan@nyu.edu


1 Introduction

A salient feature of the data is that the fraction of price changes increases rapidly in

periods of high inflation.1 Since in sticky price models the fraction of price changes

is a key determinant of the slope of the Phillips curve, understanding the causes of

high inflation critically depends on these models’ ability to reproduce this pattern. In

this paper, we study the ability of menu cost models—a class of models in which the

fraction of price changes is endogenous2—to reproduce this pattern and the ensuing

implications for the shape of the Phillips curve. Importantly, we require these models

to be consistent with the distribution of micro-price changes, a key determinant of

the real effects of monetary shocks (Midrigan, 2011, Alvarez et al., 2016).

We first show that existing menu cost models with Gaussian idiosyncratic shocks,

when calibrated to match the distribution of micro-price changes, cannot reproduce

the extent to which the fraction of price changes comoves with inflation. Intuitively,

generating the dispersion of price changes in the data requires large idiosyncratic

shocks. These idiosyncratic shocks, as opposed to aggregate shocks, drive the bulk of

price changes, so the fraction of price changes fluctuates little. An additional short-

coming arises in the presence of microeconomic strategic complementarities which

lead to very large menu costs and misallocation from inefficient price dispersion.3

Second, we propose a resolution to these shortcomings by developing a multi-

product menu cost model (Midrigan, 2011, Alvarez and Lippi, 2014) with two key

ingredients. First, the products sold by a given firm are imperfect substitutes. Second,

strategic complementarities are at the firm, rather than at the product level. Both of

these assumptions reduce the misallocation from inefficient price dispersion inside the

firm, decreasing the relative importance of idiosyncratic shocks in driving repricing

decisions and thus allowing the model to reproduce the comovement between inflation

and the fraction of price changes in the data. Although it is challenging to directly

measure the extent of misallocation inside the firm, the observation that firms change

prices infrequently and by large amounts, yet are very responsive to aggregate shocks,

suggests that within-firm price dispersion is likely not very costly.

1See Gagnon (2009), Nakamura et al. (2018), Alvarez et al. (2018) and Karadi and Reiff (2019).
2See, for example, Dotsey et al. (1999), Golosov and Lucas (2007), Gertler and Leahy (2008),

Midrigan (2011), Vavra (2013), Alvarez et al. (2016), Alvarez et al. (2022a), Auclert et al. (2022).
3See Dotsey and King (2005) and Klenow and Willis (2016), who document this problem, and

Leahy (2011) for a discussion of the importance of strategic complementarities for the slope of the
Phillips curve and the real effects of monetary policy.
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Third, we use our model to revisit the classic question of how large are the real

effects of monetary policy shocks. We show that output responses in our model are

very different than those in existing models that we argue are inconsistent with the

data. Specifically, in our model output responds non-linearly to shocks of various

sizes. The larger the shock is, the stronger the response of the fraction of price

changes and therefore the smaller are the real effects. Thus, our model predicts that

the Phillips curve is non-linear. In contrast, we show that existing models predict

linear output responses, echoing the findings of Auclert et al. (2022).

We start by motivating our analysis using micro-price data that underlies the

construction of the Consumer Price Index in the United Kingdom. Since aggregate

inflation has not been volatile prior to the recent rise in inflation, we use sectoral

data to study the high-frequency comovement between inflation and the fraction of

price changes. In line with previous work, we show that the fraction of price changes

increases in periods of high inflation. For example, when inflation is close to zero,

the fraction of price changes is approximately 10% per month. In contrast, when

inflation increases to 10%, the fraction of price changes averages 16%. To assess how

important are movements in the fraction of price changes for inflation dynamics, we

follow Klenow and Kryvtsov (2008) in decomposing inflation into an intensive margin

term that keeps the fraction of price changes constant, and an extensive margin

term. We find that the intensive margin term accounts for most of the movements in

inflation in periods of low inflation, as in Klenow and Kryvtsov (2008), but for only

half of these movements when inflation is relatively high. Thus, the extensive margin

of price changes plays an important role at high levels of inflation.

We first confront this evidence using a single-product menu cost model in which

firms are subject to Gaussian idiosyncratic and sectoral shocks. To ensure that the

model can reproduce the distribution of micro-price changes, we assume that firms

face random menu costs of adjusting prices, as in Dotsey et al. (1999), and can

occasionally change their price for free, as in Nakamura and Steinsson (2010). A single

state variable – the gap between the firm’s price and its flexible-price counterpart,

in short the price gap, summarizes the history of shocks received by each firm. This

price gap determines the hazard that the firm resets its price. In turn, the distribution

of price gaps across firms and the adjustment hazard determines the distribution of

price changes and the responses of the economy to aggregate shocks.

We calibrate this model to match the fraction and the distribution of price changes
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in the data, as well as the volatility of sectoral inflation. A robust prediction of the

model is that the fraction of price changes is nearly constant: as sectoral inflation in-

creases from 0% to 10% in our simulations, the monthly fraction of price changes only

increases from 11% to 12%, nowhere near as much as in the data. To understand why

this is the case, we leverage the result in Alvarez and Lippi (2014) that characterizes

how the fraction of price changes responds to an aggregate shock using a continuous

time version of the model. This response depends only on the probability of free price

changes and the size of the shock relative to the standard deviation of price changes.

Since the standard deviation of price changes in the data is high relative to that of

sectoral shocks, 19% vs. 1%, the fraction of price changes fluctuates little.

Our findings may appear to contradict a number of existing studies that show

that the menu cost model generates substantial fluctuations in the fraction of price

changes.4 There is, in fact, no contradiction. These papers study a simple menu

cost model in the tradition of Golosov and Lucas (2007) which is inconsistent with

the higher-order moments of the distribution of price changes, a key determinant of

the real effects of monetary policy shocks. This model therefore predicts small real

effects of monetary policy shocks, at odds with the VAR evidence (Christiano et al.,

2005).5 In contrast, the model we study reproduces the higher-order moments of the

distribution of price changes but predicts that the fraction of price changes is nearly

constant. We therefore conclude that the single-product menu cost model cannot

simultaneously reproduce the distribution of micro-price changes, a key determinant

of the real effects of monetary policy, and the extent to which the fraction of price

changes comoves with inflation, a key determinant of how non-linear these effects are.

We also characterize the size of the menu costs and losses from misallocation from

price dispersion. Our calibration, which features moderate micro strategic comple-

mentarities, requires menu costs that represent 8.3% of sales, much larger than the

1% direct estimates in the literature (Levy et al., 1997, Zbaracki et al., 2004). This

calibration also predicts implausibly large losses from misallocation: menu costs re-

duce aggregate productivity by 20%. We show that even though these shortcomings

can be remedied by assuming away strategic complementarities, the model still fails

to reproduce the comovement between inflation and the fraction of price changes.

4See, for example, Golosov and Lucas (2007), Gagnon (2009), Nakamura et al. (2018), Alvarez
et al. (2018) and Alvarez and Lippi (2022).

5We illustrate this point in a companion paper, Blanco et al. (2024).
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We next develop a model that overcomes these shortcomings. We build on a stan-

dard multi-product menu cost model in which each firm sells a continuum of prod-

ucts, each subject to idiosyncratic Gaussian quality shocks, and there are economies

of scope in price adjustment in that the firm can change the entire menu of its prices

by paying a single menu cost. Two state variables are now necessary to summarize

the history of shocks experienced by a firm: the firm’s price gap, a weighted average

of its product-level price gaps, as well as the duration of the firm’s price spells. The

latter determines the amount of within-firm misallocation: the older prices are, the

larger the misallocation, and thus the larger the losses from leaving prices unchanged.

On its own, this model has the same shortcomings as the single-product model.

We therefore introduce two ingredients that allow the model to reproduce the

comovement between inflation and the fraction of price changes, while remaining

consistent with the distribution of price changes. These ingredients decrease the

misallocation from price dispersion within the firm, reducing the importance of id-

iosyncratic shocks and elevating that of aggregate shocks in repricing decisions. First,

individual products sold by a given firm are imperfect substitutes. Our notion of a

product is a collection of highly substitutable goods that are subject to correlated

shocks. For example, various flavors of tea sold at Starbucks are highly substitutable

but also face correlated shocks, so we think of tea at Starbucks as a product that is

distinct from pastries, another product sold at Starbucks. Because a firm’s products

are imperfect substitutes, the losses that the firm faces from its inability to change

prices in response to idiosyncratic shocks are small. Second, strategic complementari-

ties, which arise due to decreasing returns to scale, are at the firm, not at the product

level. Specifically, there is a firm-specific factor of production that is fixed at the firm

level, but perfectly mobile across the products the firm sells, which further reduces

the losses from price gap dispersion induced by idiosyncratic shocks inside the firm.

Our multi-product model reproduces the relationship between the fraction of price

changes and inflation in the data. As in the data, the extensive margin of price changes

accounts for half of the fluctuations in inflation when inflation is high. This is because

our model is able to generate large dispersion in price changes with a narrow inaction

region, so firms are more responsive to shocks that generate inflation. Moreover, even

though our model features moderate strategic complementarities, it requires small

menu costs to reproduce the micro-price statistics, in line with the 1% estimates in

the data, and implies small losses from misallocation due to inefficient price dispersion.
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We further clarify the mechanism of our model by zooming in on a special case in

which the elasticity of substitution between the products sold by a firm is zero. This

special case is identical to a single-product model provided we adjust the trend money

growth rate to ensure that the firm’s price gap drifts at the same rate in both models.

Even though these two models have identical implications for the distribution of

firm price gaps, decision rules, and aggregate outcomes, the single-product equivalent

generates a much smaller dispersion in price changes. Thus, our multi-product model

behaves identically to a single-product model with narrower inaction regions, which

implies that firm repricing decisions are much more sensitive to aggregate shocks.

We use our model to revisit the real effects of monetary shocks of various sizes.

We show that in our model impulse responses are very different than those predicted

by existing models. In particular, while the two models respond similarly to small

shocks, in our model output responses are non-linear because the fraction of price

changes increases rapidly with the size of the shock. In contrast, in existing models

the output response scales linearly with the size of the shock, even for monetary shocks

as large as 15%, because the fraction of price changes varies little with the size of

the shock. In addition, the effects of monetary policy changes are asymmetric in our

model: expansionary shocks are more inflationary because asymmetries in the profit

function imply that prices are more likely to increase than to fall. We summarize

our findings by tracing out the Phillips curve implied by monetary shocks. In our

model, in contrast to existing models, the Phillips curve is highly non-linear and even

vertical at inflation rates exceeding 5%.

2 Motivating Evidence

This section uses micro price data from the UK to show that the fraction of price

changes increases with inflation, and that this is important for inflation fluctuations

when inflation is relatively high. Though these facts have been previously docu-

mented for other countries, we use the evidence for the UK to quantitatively evaluate

the ability of menu cost models to reproduce this pattern. We focus on data for

individual sectors rather than the aggregate because inflation is considerably more

volatile in individual sectors. Sectoral variation thus allows us to better understand

the relationship between inflation and the fraction of price changes but, as we discuss

in Section 3, none of our findings hinge on our focus on sectoral variation.
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2.1 Data

We use the data that underlie the construction of the Consumer Price Index (CPI) in

the UK. The data are collected by the United Kingdom Office for National Statistics

(ONS). We use publicly available monthly product-level price quotes from January

1996 to August 2022. Goods and services are classified into 71 classes following

the Classification of Individual Consumption by Purpose (COICOP 6). We exclude

centrally-collected items, which account for approximately 26% of total consumer

expenditures, as well as the energy categories. See Appendix A for details.

In computing price statistics, we use regular price series constructed by filtering

V-shaped sales that last less than three months.6 Kehoe and Midrigan (2015) show

that in theory temporary price changes do not contribute much to inflation dynamics.

We corroborate their argument empirically by showing that excluding V-shaped sales

from the calculation of inflation does not visibly change its time path.

To that end, consider the following decomposition of inflation. Let pit be the price

of good i and ωit the weight of that good in the CPI. Aggregate inflation is then

πt =
∑
i∈At

ωit log pit/pit−1,

where At = Rt ∪St is the set of goods that experience a price change in period t, Rt

is the set of goods that experience a regular price change and St is the set of goods

who experience a price change associated with a V-shaped sale. We construct an

alternative inflation series based on regular price changes by calculating

πR
t =

∑
i∈Rt

ωit log pit/pit−1,

and thus excluding price changes that either initialize or end a V-shaped sale.

Figure 1 compares the inflation series computed using all price changes with that

computed using only regular price changes. The figure reports the cumulative inflation

in the previous 12 months, that is, the year-to-year percent change in the consumer

price index. The two series are nearly indistinguishable, consistent with the theoret-

ical predictions of Kehoe and Midrigan (2015). Motivated by this observation, from

now on we focus our analysis on regular price changes only.

6We define V-shaped sales as temporary price cuts that return exactly to the original level.
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Figure 1: Inflation Calculated Using on All vs. Regular Price Changes
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2.2 Inflation and the Fraction of Price Changes

To assess the role of the extensive margin of price changes for inflation dynamics, we

follow Klenow and Kryvtsov (2008) in decomposing movements in inflation into an

extensive margin component that captures changes in the fraction of price adjust-

ments and an intensive margin that captures movements in the average price change

of firms that adjust. Specifically, letting nt(s) denote the fraction of products in sec-

tor s that experience a change in their regular price in period t and ∆t(s) denote the

average price change conditional on adjustment, we have7

πt(s) = ∆t(s)nt(s).

We gauge the role of the extensive margin by constructing a counterfactual inflation

series that replaces the observed fraction of price changes nt(s) with that sector’s

average fraction of price changes, n̄(s) = 1
T

∑
t nt(s). That is, we calculate

πc
t (s) = ∆t(s)n̄(s)

and compare the dynamics of the actual inflation series πt(s) with the counterfactual

inflation πc
t (s) that shuts down movements in the fraction of price changes. Through-

out the paper, to mitigate the concern that our results are driven by sampling noise,

7All statistics are weighted using item-level consumption expenditure weights.
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Figure 2: Inflation Decomposition: Bread and Cereals
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Notes: The left panel plots the fraction of price changes nt(s). The right panel plots πt(s) =

∆t(s)nt(s) and πc
t (s) = ∆t(s)n̄(s).

we measure the fraction of price changes as the average monthly fraction of regular

price changes in the previous 12 months and inflation as the year-to-year percent

change in the sectoral price index.

We first illustrate this decomposition in Figure 2 which shows the fraction of price

changes (left panel) and the two inflation series (right panel) for a specific sector –

“Bread and Cereals.” The fraction of price changes fluctuates substantially over time,

ranging from 5% to 20%. Consequently, the extensive margin of adjustment accounts

for a sizable share of movements in inflation in this sector, especially during the

2007-2008 world food crisis, when actual inflation exceeded 15%, while counterfactual

inflation only increased to 7%.

Figure 3(a) documents these patterns more systematically by presenting a binned

scatterplot of the fraction of price changes in a given sector against sectoral infla-

tion rates pooling data from all sectors and weighting each by its expenditure share.

We include sector fixed effects so our results capture high-frequency variation in sec-

toral inflation rates, not average differences across sectors. The figure shows that the

fraction of price changes increases systematically with inflation. For example, as in-

flation increases from 0 to 10%, the fraction of price changes increases by 6 percentage

points, from 10 to 16%. This increase is comparable to that in the U.S. time-series

data (Nakamura et al., 2018, Blanco et al., 2024).

To gauge the extent to which these movements in the fraction of price changes
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Figure 3: Inflation and the Fraction of Price Changes
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Notes: The plot controls for sectoral fixed effects and weights individual sectors by their expenditure

share. We measure the fraction of price changes as the 12-month moving average of the fraction of

monthly price changes in the preceding year and inflation as the year-to-year percent change in the

sectoral price index.

matter for inflation dynamics, Figure 3(b) shows a binned scatterplot of the coun-

terfactual inflation series that keeps the fraction of price changes constant at its

historical average against realized inflation. At low levels of inflation the extensive

margin accounts for little of the movements in inflation: the counterfactual inflation

series increases one-for-one with actual inflation. In contrast, for high inflation, above

4%, ignoring the extensive margin systematically underpredicts inflation.

Table 1 further corroborates these patterns. The slope coefficient in a regression

of πc
t (s) on πt(s) is equal to 0.80 for the entire sample, but falls to 0.48 when we

restrict attention to periods in which sectoral inflation exceeds its 75th percentile. We

therefore conclude that at high rates of inflation, the extensive margin accounts for

half of the changes in inflation.

Table 1: Slope of πc
t (s) on πt(s)

all observations 0.80

πt(s) > 75th pct. 0.48

Notes: We compute the slope coefficients using an OLS regression that weights observations for

each sector using that sector’s expenditure weights.
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3 Single-Product Menu Cost Model

We first show that existing menu cost models, when calibrated to match the distribu-

tion of micro-price changes, cannot reproduce the comovement between inflation and

the fraction of price changes in the data. In addition, parameterizations with moder-

ate micro-level strategic complementarities in price setting result in implausibly large

menu costs and losses from misallocation due to price dispersion.

Because we study the comovement between sectoral inflation and the fraction of

price changes, we consider an economy with a continuum of measure one of ex-ante

identical sectors. The output of each sector is used to produce a final good. Each

sector consists of a continuum of measure one of firms, each producing a differentiated

variety. Firms are subject to idiosyncratic and sectoral shocks. We follow Golosov

and Lucas (2007) in assuming that preferences are logarithmic in consumption and

linear in hours worked, which allows us to characterize inflation dynamics in each

sector in isolation, greatly simplifying computations.

3.1 Consumers

A representative consumer has preferences over consumption and derives disutility

from work. The consumer maximizes life-time utility, given by

E0

∞∑
t=0

βt (log ct − ht) ,

subject to

Mt +
1

1 + it
Bt = Wtht +Dt +Mt−1 − Pt−1ct−1 +Bt−1 + Tt,

where ct is consumption, ht is hours worked, Pt is the aggregate nominal price level,

Mt is the money supply, Bt is the amount of government bonds, Dt denotes profits

and Tt represents government transfers. We assume a constant money growth rate

gm and a cash-in-advance constraint

Ptct ≤ Mt.

The optimal labor supply choice implies that Wt = Ptct = Mt.

10



3.2 Technology

We next describe the assumptions we make on technology.

3.2.1 Final Goods Producers

Final output is produced by aggregating sectoral output yt(s) using a technology

yt = exp

(∫
log yt (s) ds

)
. (1)

The final output is used for consumption only, so the aggregate resource constraint

is ct = yt. The aggregate price index Pt satisfies

Pt = exp

(∫
logPt (s) ds

)
,

where Pt(s) is the price index in sector s. The assumption of a unit elasticity of sub-

stitution across sectors implies that sectoral expenditures are proportional to nominal

spending, the money supply and nominal wages

Pt(s)yt(s) = Ptyt = Mt = Wt.

3.2.2 Intermediate Goods Producers

Firm f in sector s produces output using a labor-only technology with decreasing

returns to scale determined by η ≤ 1

yt (f, s) = et (s) zt (f, s) lt (f, s)
η ,

where et(s) is productivity in sector s, zt(f, s) is the quality of the product of firm f

in that sector and lt(f, s) the amount of labor the firm uses in production. Sectoral

output is produced using a CES aggregator with elasticity of substitution σ

yt (s) =

(∫ (
yt (f, s)

zt (f, s)

)σ−1
σ

df

) σ
σ−1

. (2)

In addition to affecting the firm’s productivity, the quality index zt(f, s) also

affects demand. If prices were flexible, firms would respond to an increase in zt(f, s)
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by reducing prices one-for-one, leaving quality-adjusted prices, zt(f, s)Pt(f, s), and

firm revenues unchanged. These quality shocks therefore change firms’ desired prices

and have the advantage of not requiring keeping track of zt(f, s) as a state variable.8

We assume that the logarithms of et(s) and zt(f, s) follow independent random walk

processes with i.i.d. innovations drawn from mean zero normal distributions with

standard deviation σe and σz.
9

Letting Pt(f, s) denote an individual firm’s price, the demand function for the

firm’s output is given by

yt (f, s) = zt (f, s)

(
zt (f, s)Pt (f, s)

Pt (s)

)−σ

yt (s) ,

where the price index in sector s is

Pt (s) ≡
∫

Pt (f, s)
yt (f, s)

yt (s)
df =

(∫
(zt (f, s)Pt (f, s))

1−σ df

) 1
1−σ

.

3.3 Firm Objective

The aggregate implications of menu cost models are shaped by the distribution of

price changes (Caballero and Engel, 2007, Midrigan, 2011, Alvarez et al., 2016). We

thus assume a flexible menu cost specification that allows the model to reproduce

key moments of the distribution of price changes in the data. Specifically, we follow

Nakamura and Steinsson (2010) and assume that with probability 1 − λ firms can

change their price for free. With probability λ a price change requires a fixed cost

ξt(f, s). We assume that the fixed cost is an i.i.d. draw from a uniform distribution

U [0, ξ̄] which gives rise to a smooth adjustment hazard (Costain and Nakov, 2011,

8An alternative approach, which we discuss in Appendix C, is to assume that zt(f, s) only affects
productivity and scale the menu costs accordingly. An additional advantage of our approach is that
the model does not require extremely large idiosyncratic shocks to reproduce the dispersion of price
changes. See Klenow and Willis (2016) for an illustration of this problem and Aruoba et al. (2023)
for an alternative resolution.

9As Karadi and Reiff (2019) show, a model with fat-tailed idiosyncratic shocks can match the
distribution of micro-price changes and also predicts a strong response of the fraction of price changes
to aggregate shocks. They also show that micro-price data alone cannot identify the shape of the
distribution of shocks by presenting several models with fat-tailed shocks that match the same micro
moments yet have very different aggregate implications. Because of this identification issue, we follow
most of the menu cost literature and assume Gaussian shocks.
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Alvarez et al., 2021, Costain et al., 2022).10

The firm’s objective is to maximize the present value of its profits, given by

E0

∞∑
t=0

βt 1

Ptct

[
(1 + τ)Pt (f, s) yt (f, s)−Wt

(
yt (f, s)

et (s) zt (f, s)

) 1
η

− ξt (f, s)WtIt(f, s)

]
,

where τ = 1/ (σ − 1) is an output subsidy that corrects the markup distortion that

would arise even in the absence of menu costs. Letting It(f, s) denote a price adjust-

ment indicator, the last term represents the menu cost of changing prices, denomi-

nated in units of labor.

In order to write the firm’s problem recursively, we next express its objective as a

function of its price gap: the ratio of its actual price relative to what the firm would

charge under flexible prices. To that end we first define the real marginal cost index

in sector s as

at(s) ≡
Wt

Pt (s) yt(s)

(
yt (s)

et (s)

) 1
η

,

and define the firm’s price gap as

xt (f, s) ≡ āη
et (s) zt (f, s)Pt (f, s)

Mt

,

where ā is the steady state value of at(s). Similarly, we define the sectoral price gap

as the CES weighted average of firm price gaps

xt (s) ≡
[∫

xt (f, s)
1−σ df

] 1
1−σ

= āη
et (s)Pt (s)

Mt

.

This sectoral price gap is equal to one in steady state, and is inversely related to the

sector’s real marginal cost

xt(s) =

(
at(s)

ā

)−η

. (3)

10In Appendix D we consider a richer specification in which ξit is drawn from F (ξ) =
(

ξ
ξ̄

)ν
,

a distribution that collapses to the uniform when ν = 1 and is degenerate at ξ̄ when ν → ∞.
Calibrating this richer specification to the distribution of micro-price changes yields a value of ν
equal to 1.005, so for parsimony we focus on the uniform distribution. A model with a degenerate
distribution of menu costs cannot reproduce the unimodal distribution of micro-price changes in
the data, but rather predicts a multi-modal distribution with sharp spikes near the adjustment
thresholds, as illustrated in Blanco et al. (2024).
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Moreover, under flexible prices xt (f, s) = xt(s) = 1 and at(s) = η.

With this notation in place, we can write the firm’s objective as

E0

∞∑
t=0

βt
(
xt (s)

σ−1
[
(1 + τ)xt (f, s)

1−σ − āxt (s)
( 1
η
−1)(σ−1) xt (f, s)

−σ
η

]
− ξt (f, s) It(f, s)

)
.

(4)

As in Burstein and Hellwig (2008), decreasing returns to scale introduce a micro-

level strategic complementarity in price setting, dampening the response of individual

prices to aggregate and sectoral shocks. To see this, notice that the price gap that

maximizes the firm’s flow profits is

xt (f, s) =

(
ā

η

) 1

1+σ( 1
η−1)

xt (s)

(σ−1)( 1
η−1)

1+σ( 1
η−1) .

The exponent of xt(s) determines the strength of strategic complementarities, that is,

the extent to which an individual firm’s price depends on the price of its competitors.

The lower η is or the higher σ, the stronger are strategic complementarities. To see

why this is the case, consider an increase in the money supply. If most firms do not

adjust their prices, xt(s) falls. A firm that resets its price recognizes that if it were

to increase it, it would experience an output drop, more so the more elastic demand

is, that is, the larger is σ. This drop in output would reduce the firm’s marginal

cost, more so the lower the returns to scale, that is, the lower is η. This decrease in

marginal cost dampens the firm’s desired price increase.11

Equation (4) shows that the problem of a firm in a given sector only depends on

current and future sectoral price gaps xt(s) and not on other sectoral and aggregate

variables. To see how the sectoral price gap xt(s) is determined in equilibrium, let

x̂t(f, s) ≡ āη
et (s) zt (f, s)Pt−1 (f, s)

Mt

denote the firm’s individual state variable: its last period’s price scaled by the money

11An alternative way to introduce micro-level strategic complementarities is through variable
markups that depend on firm market shares. As Alvarez et al. (2022b) show, up to a second-order
approximation, these approaches are equivalent.
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supply and productivity. The firm’s state evolves according to

x̂t(f, s) = xt−1 (f, s)
et (s)

et−1 (s)

zt (f, s)

zt−1 (f, s)

Mt−1

Mt

. (5)

If the firm does not adjust, its price gap is xt(f, s) = x̂t(f, s). If the firm adjusts its

price, it resets the price gap to xt(f, s) = x∗
t (s), which is common to all firms that

adjust. Letting vat (s) denote the value of adjusting the price and vnt (x̂, s) the value of

not adjusting, the firm adjusts with probability

ht (x̂, s) = 1− λ+ λmin

{
vat (s)− vnt (x̂, s)

ξ̄
, 1

}
.

Finally, letting Ft(x̂; s) denote the distribution of firms, the sectoral price gap

satisfies

xt(s) =

(∫ [
ht (x̂; s)x

∗
t (s)

1−σ + (1− ht (x̂; s)) x̂
1−σ
]
dFt (x̂; s)

) 1
1−σ

.

We use the Krusell and Smith (1998) approach to characterize how xt(s) evolves over

time as a function of a single moment of the distribution of Ft (x̂; s) . This approach

works well in this setting, with an R2 in the perceived law of motion in excess of

0.999. See Appendix B for details.

3.4 Losses from Misallocation

Menu costs generate inefficient price dispersion and misallocation. To see this, let

lt(s) =

∫
lt(f, s)df

denote the amount of labor firms in sector s use in production. We can derive a

sectoral production function

yt (s) = et (s)ϕt (s) lt (s)
η ,

where

ϕt (s) =

(∫ (
xt (f, s)

xt (s)

)−σ
η

df

)−η
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captures the losses from misallocation. When prices are flexible ϕt(s) = 1. More

generally, dispersion in relative prices reduces ϕt(s), more so the larger σ/η is. Intu-

itively, efficiency requires that all firms in a given sector use the same amount of labor,

lt(f, s) = lt(s). The more elastic demand is, or the stronger the decreasing returns,

the larger the dispersion in firm employment implied by a given amount of relative

price dispersion, and thus the larger the productivity losses from misallocation.

3.5 Parameterization

Table 2 reports the result of the parameterization. A period is a month and we set

the discount factor β to an annualized value of 0.96. We start with an economy

with moderate micro-level strategic complementarities by setting σ equal to 6 and

the elasticity of labor in the production function η to 2/3. We show however that

even a model without strategic complementarities cannot reproduce the comovement

between inflation and the fraction of price changes in the data.

In our baseline calibration, reported in the column labeled “Free price changes,”

we choose the money growth rate gm, the standard deviation of idiosyncratic shocks

σz, the probability of free price changes 1 − λ, the upper bound of the menu cost

distribution ξ̄ and the standard deviation of sectoral shocks σe to match key moments

of the distribution of non-zero price changes in the UK data. Specifically, we target a

monthly fraction of price changes of 0.116, a mean price change of 0.018, a standard

deviation of price changes of 0.188, a kurtosis of price changes of 3.609, and a volatility

of sectoral inflation of 0.029.

We report the data moments in the first column of Panel A in Table 2. We

compute these statistics using regular price changes. To mitigate measurement error

concerns, we drop the top and bottom 2% of the price change distribution.12 We

calculate the sectoral fraction of price changes in the data as the harmonic weighted

average of the fraction of price changes of individual product categories (items) that

belong to that sector. To mitigate the concern that dispersion in the size of price

changes is driven by ex-ante heterogeneity, we follow Klenow and Kryvtsov (2008) in

standardizing the distribution of price changes by the respective item-level mean and

variance. See Appendix A for details.

As Panel A shows, the model matches the targeted moments perfectly. As Panel B

12See Appendix A for price statistics computed using alternative truncations.
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Table 2: Parameterization of Single-Product Model

A. Moments

Data Free price
changes

No free price
changes

I. Targeted

fraction ∆p 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018
std. dev. ∆p 0.188 0.188 0.188
kurtosis ∆p 3.609 3.609 1.998
std dev. πt(s) 0.029 0.029 0.029

II. Not targeted

distribution of |∆p|

10th percentile 0.018 0.021 0.079
25th percentile 0.045 0.053 0.116
50th percentile 0.104 0.118 0.165
75th percentile 0.204 0.214 0.220
90th percentile 0.334 0.315 0.272

B. Calibrated Parameter Values

Free price
changes

No free price
changes

gm mean money growth rate 0.020 0.021
σz s.d. idios. shocks 0.064 0.064
λ 1 - prob. free change 0.911
ξ̄ upper bound menu cost 39.08 3.376
σe s.d. sectoral shocks 0.011 0.010

Note: The money growth rate is annualized and the menu cost is relative to average sales. In the

models without free price changes λ is set to 1. In the “No free price changes” calibration we do

not target the kurtosis and italicize its implied value. In all calibrations we set σ = 6, η = 2/3 and

β = 0.96 (annualized).

shows, the model implies a high dispersion of idiosyncratic shocks relative to sectoral

shocks, σz = 0.064 vs. σe = 0.011, a large upper bound on the distribution of

menu costs, ξ̄ = 39 times average monthly sales, and a large probability of free price

changes, 1− λ = 0.089. Free price changes thus account for 77% (0.089/0.116) of all
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price changes. As shown in Panel A, the model is also able to replicate the distribution

of the size of price changes, which we do not explicitly target. For example, the 10th

percentile is 0.018 in the data and 0.021 in the model, whereas the 90th percentile is

0.334 in the data and 0.315 in the model. Thus the model generates nearly as many

small and large price changes as in the data. In Appendix F we plot the histogram

of price changes predicted by the model against the data.

3.6 Model Implications

We next evaluate the model’s ability to reproduce the relationship between inflation

and the fraction of price changes in the data. We also report the model’s implications

for the size of menu costs and losses from misallocation.

Importance of the Extensive Margin. Figure 4 assesses the model’s ability to

reproduce the empirical comovement between actual inflation πt(s) and the coun-

terfactual inflation series πc
t (s) that shuts down fluctuations in the fraction of price

adjustments. As in the data, we compute inflation as the year-to-year percent change

in the sectoral price level, and we compute the fraction of price changes as the 12-

month moving average in the preceeding year. The left panel of the figure shows

that, in contrast to the data, πt(s) and πc
t (s) comove nearly one-for-one in the model.

Thus, fluctuations in the fraction of price changes play almost no role in driving infla-

tion dynamics, even when sectoral inflation rates are high. In particular, as inflation

increases from 0% to 10% in our simulations, the monthly fraction of price changes

only increases by 0.7 percentage points (from 11.3% to 12%), nowhere near the 6

percentage points increase in the data.

Panel A of Table 3 reinforces this point in the second column. The slope coeffi-

cients from regressing πc
t (s) on πt(s) are close to one, and fall to only 0.94 when we

restrict the sample to periods when sectoral inflation exceeds its 75th percentile. The

patterns are at odds with the data, where these coefficients fall below one-half at high

rates of inflation.

Size of Menu Costs and Misallocation. We also show that the model requires

implausibly large menu costs to reproduce the data and predicts implausibly large

losses from misallocation. As the second column of Panel A in Table 3 shows, the

average amount of resources spent on adjusting prices in a given period is equal to
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Figure 4: Importance of the Extensive Margin
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Notes: The figures are based on the calibration reported in Table 2. We compute inflation as the
year-to-year percent change in the sectoral price level, and the fraction of price changes as the 12-
month moving average in the preceeding year.

8.3% of average firm sales, a number much larger than the estimates reported in

Levy et al. (1997) and Zbaracki et al. (2004), which are in the neighborhood of 1%

of firm revenues. Moreover, the model predicts that aggregate productivity is 19.9%

lower than under flexible prices. This number is comparable to the estimates of

misallocation reported by De Loecker et al. (2020) and Baqaee and Farhi (2018) which

encompass all distortions that lead to misallocation (taxes, factor adjustment costs,

financial frictions, markup variation arising from differences in demand elasticities

etc.), as well as differences in production function elasticities across producers.13 It

is unlikely that menu costs alone account for all observed misallocation in the data.

3.7 Understanding the Results

To understand what drives our findings above, we consider in Appendix E a con-

tinuous time version of our model. For simplicity, we assume a fixed, rather than

random menu cost, and consider a quadratic approximation to the firm’s objective

function and no growth in the money supply, as in Alvarez and Lippi (2014). We

use this setting to derive three formulas that describe i) how the fraction of price

changes responds to one-time sectoral shocks,14 as well as the determinants of ii) the

13See, for example, Foster et al. (2022) for a discussion.
14Our technology and preference assumptions imply that the responses of sectoral prices to a

sectoral shock are identical to the responses of aggregate prices to an aggregate shock.
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Table 3: Model Implications

Data σ = 6 σ = 3

η = 2/3 η = 1 η = 2/3 η = 1

A. Free Price Changes

slope of πc
t (s) on πt(s)

all observations 0.80 0.99 0.99 0.99 0.99
πt(s) > 75th pct. 0.48 0.94 0.94 0.96 0.96

menu costs/sales 0.083 0.020 0.023 0.009
losses from misallocation 0.199 0.053 0.071 0.029

B. No Free Price Changes

slope of πc
t (s) on πt(s)

all observations 0.80 0.98 0.97 0.98 0.98
πt(s) > 75th pct. 0.48 0.94 0.93 0.94 0.93

menu costs/sales 0.065 0.017 0.022 0.009
losses from misallocation 0.089 0.023 0.030 0.012

size of menu costs and iii) misallocation from price dispersion. We then illustrate

these theoretical predictions using the quantitative model introduced above.

Importance of the Extensive Margin. As Alvarez and Lippi (2014) show, the

response of the fraction of price changes to a one-time shock of size δ is

∆n =
1− l

2

δ2

V[∆p]
+O(δ4), (6)

where l is fraction of price changes that are free and V[∆p] is the variance of price

changes conditional on adjustment.15 If the size of the sectoral shock is small relative

to the variance of price changes, the fraction of price changes responds little. In our

calibration, the standard deviation of sectoral shocks is 0.011 and that of price changes

is 0.188, so δ2/V[∆p] ≈ 0.003. Therefore, the fraction of price changes responds

little. This response is further dampened by the presence of free price changes (in our

calibration l = 0.089/0.116 ≈ 3/4), but since δ2/V[∆p] is nearly zero, the fraction of

15See Appendix E for a derivation.
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price changes responds little to aggregate shocks even absent free price changes.

To further illustrate this, we calibrate a version of the model in which we set λ = 1.

As the column labeled “No free price changes” in Table 2 shows, this model can no

longer reproduce the kurtosis of price changes and generates a distribution of |∆p|
that is much less dispersed than in the data. As shown in the right panel of Figure

4 and Panel B of Table 3, this model also predicts that most fluctuations in inflation

are driven by the intensive margin of price changes, not changes in the fraction of

prices that adjust. Once again, this is because even in this version of the model,

sectoral shocks are small relative to the idiosyncratic shocks needed to generate the

dispersion in price changes observed in the data.

Relationship to Existing Work. The result above may seem to contradict a

number of existing studies that show that the menu cost model generates substantial

fluctuations in the fraction of price changes.16 There is, in fact, no contradiction.

These papers study a simple menu cost model in the tradition of Golosov and Lucas

(2007) which is inconsistent with the higher-order moments of the distribution of

price changes, a key determinant of the real effects of monetary policy shocks. This

model therefore predicts small real effects of monetary policy shocks, at odds with

the empirical evidence (Christiano et al., 2005). In contrast, the model we study in

this section reproduces the higher-order moments of the distribution of price changes

but predicts that the fraction of price changes is nearly constant.

An exception is the work of Cavallo et al. (2023) who study a model with a gen-

eralized adjustment hazard and can therefore match the distribution of price changes

in the data. These authors, however, consider a very large 20% aggregate shock,

an order of magnitude larger than the shocks we consider here that are necessary

to reproduce the volatility of inflation. In their paper, with a 20% shock, the term

δ2/V[∆p] in equation (6) is much larger than in our setting. Thus, while it is indeed

the case that in menu cost models the fraction of price changes responds significantly

to very large shocks, it does not in response to more moderately sized shocks that do

trigger movements in the fraction of price changes in the data.

16See, for example, Golosov and Lucas (2007), Gagnon (2009), Nakamura et al. (2018), Alvarez
et al. (2018), Alexandrov (2020) and Alvarez and Lippi (2022) who study the relationship between
inflation and the fraction of price changes either in the cross-section, by comparing environments
with different levels of steady-state inflation, or in the time-series, as we do, by subjecting the
economy to aggregate shocks.
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We discuss these points at length using U.S. data in a companion paper, Blanco et

al. (2024). There we identify the sequence of aggregate shocks that allow the model

to exactly reproduce the path of inflation and show that even though the Golosov

and Lucas (2007) model generates fluctuations in the fraction of price changes, it

predicts too little dispersion in the size of price changes and therefore little monetary

non-neutrality. In contrast, versions of the model that reproduce the dispersion in the

size of price changes and generate stronger monetary non-neutrality predict a nearly

constant fraction of price changes.

Size of Menu Costs and Misallocation. We also show in Appendix E that the

total expenditures on menu costs in a given period, relative to total revenues,17 is

C ≈ (σ − 1)

[
1 + σ

(
1

η
− 1

)]
V[∆p]Ψ(K[∆p])

12
, (7)

where Ψ(·) is a hump-shaped function that satisfies Ψ(1) = 1 and Ψ(6) = 0. For

our baseline parameterization, Ψ(3.609) = 1.33. We also show that the losses from

misallocation from price dispersion are

log(ϕ) ≈ −σ

2

[
1 + σ

(
1

η
− 1

)]
V[∆p]K[∆p]

6
. (8)

Both of these objects depend on the two moments we target in the calibration, the

variance and the kurtosis of price changes, as well as the demand elasticity σ and the

degree of returns to scale η. As discussed above, our choice of σ = 6 and η = 2/3,

which generates micro-level strategic complementarities, implies large menu costs

and losses from misallocation. In the last three columns of Table 3 we consider

alternative values of these two parameters which greatly reduce the calibrated menu

costs and losses from misallocation.18 However, these alternative parameterizations

imply weaker or no micro-level strategic complementarities and therefore smaller real

effects of monetary shocks, at odds with the evidence (Christiano et al., 2005).

Importantly, though eliminating micro-level strategic complementarities reduces

the size of menu costs and the losses from misallocation, it does not affect the im-

portance of the extensive margin of price changes. This is consistent with equation

17See Alvarez et al. (2016) for a similar formula which expresses menu costs as a fraction of profits.
18We re-calibrate the models for each of these alternative parameterizations to match the same

targets in Table 2. See Appendix F for details.
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(6) which shows that the response of the fraction of price changes to sectoral shocks

does not depend on the demand elasticity σ and the returns to scale η.

To summarize, the single-product menu cost model, when calibrated to match the

distribution of micro price changes in the data, cannot reproduce the relationship

between inflation and the fraction of price changes. Moreover, parameterizations of

the model with moderate micro-level strategic complementarities also imply very large

menu costs and losses from misallocation from price dispersion. As we show below,

these shortcomings also apply to the canonical multi-product menu cost model with

economies of scope in price setting, but can be remedied by introducing features that

reduce the degree of misallocation from price gap dispersion inside the firm.

4 Multi-Product Menu Cost Model

We next extend the model to a multi-product setting in which there are economies

of scope in the price adjustment technology, as in Midrigan (2011) and Alvarez and

Lippi (2014).19 Each firm sells a unit measure of products. Each product is subject to

independent quality shocks. The firm can change the entire menu of prices by paying

a random menu cost drawn from a uniform distribution. Since economies of scope in

price setting allow us to match the large number of small price changes observed in

the data, we no longer need to assume that some price changes are free.

We show that economies of scope, on their own, do not remedy the shortcomings

discussed above. We therefore introduce two ingredients in the multi-product model,

both of which reduce the misallocation from price dispersion within the firm and

narrow the inaction region, thus allowing the model to reproduce the relationship

between inflation and the fraction of price changes we document in the data. Ad-

ditionally, the model implies small menu costs and losses from misallocation even in

the presence of strategic complementarities.

The first ingredient is a nested CES aggregator in which the elasticity of substi-

tution between the products sold by a given firm is lower than that across firms. Our

notion of a product is a collection of highly substitutable goods, subject to correlated

shocks. For example, we think of tea sold by Starbucks as representing a product

because different flavors or sizes of tea are close substitutes that experience correlated

19See Bhattarai and Schoenle (2014) and Bonomo et al. (2022) for evidence on multi-product
pricing.
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shocks. In contrast, different pastries sold by Starbucks, while highly substitutable

among themselves, are much less substitutable with tea. The second ingredient is

that decreasing returns to scale arise due to a specific factor of production that is

fixed at the firm level, but is perfectly mobile across the products a firm sells. This

implies that there are decreasing returns and therefore strategic complementarities

at the firm level, but the losses from misallocation within the firm are lower than in

a model where the decreasing returns to scale are also at the product level.

Since the multi-product model shares many elements with the single-product

model above, we only discuss the new ingredients that we introduce here.

4.1 Technology

The technology for producing the final good is the same as in equation (1) and that

for producing sectoral output is

yt (s) =

(∫
yt (f, s)

σ−1
σ df

) σ
σ−1

.

A firm produces a unit mass of products that are aggregated into a firm-level com-

posite using

yt (f, s) =

(∫ (
yit (f, s)

zit (f, s)

) γ−1
γ

di

) γ
γ−1

,

where γ is the elasticity of substitution between different products and zit(f, s) is the

quality of product i, which follows a random walk process

log zit+1(f, s) = log zit(f, s) + σzε
z
it+1(f, s),

where σz is the volatility of innovations and εzit+1(f, s) is an i.i.d. draw from a standard

normal distribution.20 The demand for an individual product is given by

yit (f, s) = zit (f, s)

(
zit (f, s)Pit (f, s)

Pt (f, s)

)−γ

yt (f, s) ,

20In an earlier draft, we considered an alternative specification with firm-level, in addition to
product level quality shocks. While that economy also reproduces the relationship between inflation
and the fraction of price changes, it also features stronger selection effects and thus less non-neutrality
for small aggregate shocks. Since we would like to argue that the non-linearity in our model is not
driven by selection effects, here we substantially reduce these by eliminating firm level shocks.
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where the composite price of the bundle of products of firm f is

Pt (f, s) ≡
∫

Pit (f, s)
yit (f, s)

yt (f, s)
di =

(∫
(zit (f, s)Pit (f, s))

1−γ di

) 1
1−γ

.

Individual products are produced with a technology that uses labor and an input,

say managerial, that is in fixed supply at the firm level but perfectly mobile across

individual products. Specifically, letting mit(f, s) denote the amount of the fixed

input used for product i, the production function is

yit(f, s) = et (s) zit (f, s)mit (f, s)
1−η lit (f, s)

η . (9)

We normalize the supply of the fixed factor to 1, so the choice of mit(f, s) satisfies∫
mit (f, s) di = 1.

This technology exhibits constant returns to scale at the individual product level

but decreasing returns at the firm level. Assuming instead that the fixed factor is

immobile across products, so that mit(f, s) = 1, the technology in equation (9) also

features decreasing returns to scale at the product level. As we show below, under

this alternative assumption, the losses from misallocation within the firm are larger.

4.2 Firm Objective

We next discuss the problem of the firm. Its life-time value is

V0(f, s) = E0

∞∑
t=0

βt

Ptct

[
(1 + τ)

∫
Pit (f, s) yit (f, s) di−Wtlt(f, s)− ξt(f, s)WtIt(f, s)

]
,

where It(f, s) is an indicator for whether the firm changes its menu of prices. Letting

xit (f, s) = āη
et (s) zit (f, s)Pit (f, s)

Mt

denote the price gap of product i, the firm’s price gap is

xt (f, s) =

(∫
xit (f, s)

1−γ di

) 1
1−γ

= āη
et (s)Pt (f, s)

Mt

.
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Letting lt(f, s) =
∫
lit(f, s)di denote the total amount of labor a firm uses in produc-

tion, we can derive a firm-level production function

yt (f, s) = et (s)ϕt (f, s) lt (f, s)
η ,

where ϕt(f, s) is firm productivity which can fall below one because of losses from

misallocation from price gap dispersion inside the firm. Notice that this firm-level

production function features decreasing returns to scale, which generates strategic

complementarities, as in the single-product menu cost model.

In our model with a mobile specific input, firm productivity is

ϕt(f, s) =

(∫ (
xit (f, s)

xt (f, s)

)−γ

di

)−1

.

In contrast, if the specific input is fixed at the product level, firm productivity is

ϕt(f, s) =

(∫ (
xit (f, s)

xt (f, s)

)− γ
η

di

)−η

,

and is lower than in our model for a given dispersion in price gaps.

With this notation, the firm’s objective can be expressed in terms of the firm-level

price gap and the losses from misallocation as

E0

∞∑
t=0

βt
(
xt (s)

σ−1
[
(1 + τ)xt (f, s)

1−σ − āxt (s)
( 1
η
−1)(σ−1) xt (f, s)

−σ
η ϕt (f, s)

− 1
η

]
− ξt(f, s)It(f, s)

)
.

Thus the firm’s flow profits depend on the amount of misallocation from price gap

dispersion inside the firm. The lower this misallocation is, the smaller are the profit

losses from not adjusting prices, so the lower the incentives to adjust in response to

idiosyncratic shocks.

Since the firm’s objective only depends on its price gap xt(f, s), the productivity

ϕt(f, s) and the sectoral price gap xt(s), we can write the firm’s problem recursively

by summarizing the distribution of the firm’s price gaps with two idiosyncratic state

variables. To derive these, consider a firm that does not adjust the prices Pit−1(f, s)
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it inherits from the previous period. Its composite price index is then equal to

Pt (f, s) =

(∫
(zit (f, s)Pit−1 (f, s))

1−γ di

) 1
1−γ

.

Since zit(f, s) follows a geometric random walk with independent innovations, this

composite price index evolves according to

Pt (f, s) = exp

(
(1− γ)

σ2
z

2

)
Pt−1 (f, s) .

If γ > 1, the composite price drifts down over time at a rate that increases with

the volatility of idiosyncratic shocks. Intuitively, the composite price index is a

quantity-weighted average of individual product prices, so even though individual

prices are constant, consumers reallocate demand towards products with cheaper

quality-adjusted prices.

The first state variable we keep track of is then

x̂t (f, s) = āη
et (s) exp

(
(1− γ) σ2

z

2

)
Pt−1 (f, s)

Mt

,

the firm’s price gap in the absence of price changes. If the firm resets its prices,

the gap is equal to xt(f, s) = x∗
t (s), the optimal reset price gap, otherwise it is

xt(f, s) = x̂t(f, s). This state variable evolves over time according to

x̂t(f, s) = exp

(
(1− γ)

σ2
z

2

)
xt−1 (f, s)

et (s)

et−1 (s)

Mt−1

Mt

.

The second state variable we keep track of is the duration of a firm’s price spell, as

this determines the losses from misallocation within the firm. To see why, notice that

when the firm resets its prices, it sets xit(f, s) = x∗
t (s) and eliminates the misallocation

inside the firm, so ϕt(f, s) = 1. Over time, the losses from misallocation increase

because the distribution of price gaps becomes more dispersed. In our model with a

mobile specific factor, the productivity of a firm whose prices are d periods old is

ϕt (f, s) = exp

(
−dγ

σ2
z

2

)
. (10)
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For a given duration, the losses from misallocation are increasing in the elasticity of

substitution γ and the volatility of idiosyncratic shocks. Assuming instead that the

specific factor is immobile across products implies

ϕt (f, s) = exp

(
−dγ

σ2
z

2

(
1 + γ

(
1

η
− 1

)))
, (11)

so the losses from misallocation are larger than in our baseline model whenever η < 1.

Thus, by assuming that γ is relatively low and the strategic complementarities are at

the firm rather than the product level, we reduce the losses from misallocation caused

by idiosyncratic productivity shocks and therefore reduce their importance relative

to aggregate shocks in determining price adjustment decisions.

As in the single-product model, we use the Krusell and Smith (1998) approach to

characterize how the sectoral price gap x̂t(s) evolves over time in response to sectoral

shocks. We find that the method works well even in the multi-product setting, with

a R2 in the perceived law of motion for the sectoral price gap in excess of 0.997.

Lastly, we note that the distribution of price changes for a firm with a price gap

x̂t(f, s) that last changed its price d periods ago and adjusts in period t is

log
P ∗
it (f, s)

Pit−d (f, s)
∼ N

(
log

x∗
t (s)

x̂t (f, s)
+ d (1− γ)

σ2
z

2
, dσ2

z

)
.

The older the firm’s prices are, the more dispersed its price gaps and therefore the

more dispersed its price changes. In turn, the distribution of overall price changes is

equal to a mixture of the normal distributions above and is therefore fat-tailed as long

as there is randomness in the menu costs, which generates dispersion in the duration

of price spells conditional on adjustment.

4.3 Parameterization

Table 4 shows the parameterization of the two variants of the multi-product model.

In both of these we set σ = 6 and η = 2/3, as in the single-product model, so they

also feature moderate strategic complementarities. In our baseline economy, which

we refer to as our model, we assume that the specific factor is mobile across products

and set γ = 1. As we show below, this value of γ allows the model to reproduce
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that menu costs are approximately 1% of firm revenues.21 In the standard multi-

product economy, we assume that the specific factor is immobile across products and

set γ = σ = 6.

Our calibration strategy is similar to that in the single-product model, except

that we no longer explicitly target the kurtosis of price changes since we have one

fewer parameter. Panel A of Table 4 shows that both multi-product models are able to

perfectly match the targeted moments, namely the fraction of price changes, the mean

and standard deviation of price changes, and the volatility of sectoral inflation. The

models also reproduce well the untargeted statistics: the kurtosis of price changes and

the distribution of the size of price changes. Panel B reports the calibrated parameter

values. With the exception of the upper bound of the menu cost distribution, which

is much smaller in our model, both models imply similar parameter values.

4.4 Model Implications

We next discuss the ability of the multi-product models to reproduce the relationship

between inflation and the fraction of price changes, as well as their implications for

the size of menu costs and the losses from misallocation.

Importance of the Extensive Margin. Our model predicts that the fraction of

price changes increases much more in periods of high inflation. For example, when

inflation increases from 0 to 10%, our model predicts that the fraction of price changes

increases by 5 percentage points, from 10.5 to 15.5%, close to the 6 percentage points

increase in the data. In contrast, the standard multi-product model predicts a much

smaller increase of 1.2 percentage points.

Figure 5 plots the relationship between sectoral inflation πt(s) and the counter-

factual sectoral inflation πc
t (s) that eliminates fluctuations in the fraction of price

changes. Our model reproduces the non-linear relationship between the two, whereas

the standard multi-product model predicts that the extensive margin of price changes

plays almost no role in driving inflation dynamics, even at high rates of inflation.

Table 5 further corroborates this point. In our model, the slope coefficient from

regressing πt(s) on πc
t (s) is 0.83, close to the 0.80 in the data, and falls to 0.57 when

sectoral inflation is above its 75th percentile, close to its 0.48 empirical counterpart. In

21In the robustness section we report results for alternative values of γ.
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Table 4: Parameterization of Multi-Product Model

A. Moments

Data Our model Standard

I. Targeted

fraction ∆p 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018
std. dev. ∆p 0.188 0.188 0.188
std dev. πt(s) 0.029 0.029 0.029

II. Not targeted

kurtosis ∆p 3.609 3.873 3.612

distribution of |∆p|

10th percentile 0.018 0.020 0.022
25th percentile 0.045 0.053 0.055
50th percentile 0.104 0.115 0.118
75th percentile 0.204 0.206 0.209
90th percentile 0.334 0.311 0.312

B. Calibrated Parameter Values

Our model Standard

gm mean money growth rate 0.023 0.022
σz s.d. idios. shocks 0.063 0.063
ξ̄ upper bound menu cost 0.960 26.56
σe s.d. sectoral shocks 0.011 0.010

Note: The money growth rate is annualized and the menu cost is relative to average sales.

contrast, in the standard model, regressing πt(s) on πc
t (s) yields a slope coefficient of

0.97. This slope coefficient only falls to 0.89 when inflation exceeds its 75th percentile.

Size of Menu Costs and Misallocation. The last two rows of Table 5 show that

our model requires small menu costs, in line with the 1% estimates from the data, to

reproduce the micro-price statistics. In contrast, the standard model requires menu

costs that are 30 times larger. Additionally, our model implies that the productiv-

ity losses from misallocation from menu costs are 1.3%, whereas the standard model
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Figure 5: Importance of the Extensive Margin
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Table 5: Multi-product Model Implications

Data Our model Standard

slope of πc
t (s) on πt(s)

all observations 0.80 0.83 0.97
πt(s) > 75th pct. 0.48 0.57 0.89

menu costs/sales 0.010 0.297
losses from misallocation 0.013 0.367

implies much larger losses, equal to 36.7%. That menu costs and misallocation are

smaller in our model follows from the fact that the same volatility of quality shocks

σz translates into much lower within-firm losses from misallocation, as shown in equa-

tions (10) and (11).

As we showed in the single-product model, one could reduce the size of menu

costs and losses from misallocation by simply eliminating strategic complementari-

ties in price setting and reducing the demand elasticity faced by individual firms.

Doing so would render the aggregate price index much more flexible, reducing the

real effects of monetary shocks, at odds with the empirical evidence. By assuming

that the elasticities of substitution between and across firms are different and that

complementarities are across but not within firms, our model breaks the tight link

between micro-level complementarities and the size of menu costs and misallocation.
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Figure 6: Adjustment Hazards in Multi-Product Model

Our Model

-0.2 -0.1 0 0.1 0.2

x̂

0

0.2

0.4

0.6

0.8

1
f(x̂)
h(x̂; 3)
h(x̂; 18)

Standard Model

-0.2 -0.1 0 0.1 0.2

x̂

0

0.2

0.4

0.6

0.8

1

4.5 Understanding the Results

To understand why the fraction of price changes fluctuates much more in our model

relative to the standard model, Figure 6 plots the distribution of firm price gaps

x̂t(f, s) across firms and sectors, as well as the adjustment hazard for firms that

last adjusted prices 3 and 18 months ago. We note that the adjustment hazards

are much flatter in the standard model compared to our model. This reflects the

much larger menu costs required to match the micro-price statistics in the standard

model. The flatter the adjustment hazard, the smaller is the fraction of firms that

adjusts in response to a shock that shifts the distribution of price gaps x̂t(f, s), and

therefore the lower the response of the fraction of price changes. We also note that

the adjustment hazard increases with the duration of prices because the resulting

increase in misallocation inside the firm given by equations (10) and (11) makes it

more likely for firms with older prices to adjust.

To sharpen the intuition behind our findings, recall that in the continuous-time

version of the single-product model without free price changes the response of the

fraction of price changes to a one-time sectoral shock of size δ is

∆n =
1

2

δ2

V[∆p]
+O(δ4). (12)

This result relies on the one-to-one relationship between the variance of price changes

V[∆p] and the width of the inaction region, S, namely V[∆p] = S2. Thus, the extent

to which the fraction of price changes increases after a shock of size δ depends on how

large the shock is relative to the width of the inaction region.

We argue next that in the multi-product model there is no longer a tight relation-
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ship between the variance of price changes and the width of the inaction region: as

shown in Figure 6, the two multi-product models have different adjustment hazards

despite matching the same variance of price changes. To that end, consider a version

of our multi-product model in which the elasticity of substitution between a firm’s

products is equal to γ = 0, so there are no losses from misallocation inside the firm

and ϕt(f, s) = 1. The firm’s objective then becomes

E0

∞∑
t=0

βt
(
xt (s)

σ−1
[
(1 + τ)xt (f, s)

1−σ − āxt (s)
( 1
η
−1)(σ−1) xt (f, s)

−σ
η

]
− ξt(f, s)It(f, s)

)
,

(13)

where, absent a price change, the firm price gap evolves according to

xt(f, s) = exp

(
σ2
z

2

)
xt−1 (f, s)

et (s)

et−1 (s)

Mt−1

Mt

. (14)

Comparing equations (13) and (14) to their counterparts (4) and (5) from the

single-product model, reveals that the multi-product model with γ = 0 is equivalent

to a single-product model in which there are no idiosyncratic shocks and in which the

money growth rate satisfies

gsinglem = gmulti
m − σ2

z

2
.

This equivalent single-product model has identical value functions, adjustment thresh-

olds and optimal reset prices as its multi-product counterpart, and therefore has the

same aggregate implications. However, the two models have very different implica-

tions for the distribution of price changes.

We illustrate this point by calibrating the multi-product model with γ = 0 using

the same strategy as above. The second column of Table 6 shows that this model

reproduces the targeted moments perfectly. The last column of the table reports the

moments implied by evaluating the equivalent single-product model at the calibrated

parameters from our multi-product model with γ = 0. The equivalent single-product

model implies a standard deviation of price changes of only 1.9%, much smaller than

the 18.8% in the multi-product analog and in the data.

Since the two models have identical aggregate implications, they predict the

same response of the fraction of price changes to a sectoral shock of size δ. We

can therefore leverage equation (12) to express the response of the fraction of price

changes in our multi-product model as a function of the variance of price changes
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in the equivalent single-product model. For example, for a sectoral shock of 0.01,

δ2/V[∆p] = 0.012/0.0192 ≈ 0.25, much larger than in the single-product model we

considered in Section 3. Intuitively, our multi-product model behaves identically to a

single-product model with narrower inaction regions, which implies that firm repricing

decisions are much more sensitive to aggregate shocks.

Table 6: Equivalent Single-product Model

Data
Our model

γ = 0
Equivalent

single product

I. Targeted

frequency ∆p 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.000
std. dev. ∆p 0.188 0.188 0.019
std dev. πt(s) 0.029 0.029 0.029

II. Not targeted

kurtosis ∆p 3.609 4.480 2.211

distribution of |∆p|

10th percentile 0.018 0.019 0.007
25th percentile 0.045 0.050 0.010
50th percentile 0.104 0.109 0.016
75th percentile 0.204 0.199 0.022
90th percentile 0.334 0.309 0.030

Note: The moments reported in the column “Equivalent single product” are computed by evaluating

the equivalent single product model at the calibrated parameters from our model with γ = 0.

4.6 The Role of γ

We next explore how the conclusions of our model are shaped by the within firm

elasticity of substitution γ. To that end, we recalibrate two versions of our model in

which we set γ = 0 and γ = 3, respectively. We report the results of the calibration

in Appendix F and summarize the main predictions here. Table 7 shows that when

γ = 0 the model predicts too large of a role for the extensive margin of price changes

in driving inflation fluctuations relative to the data: when sectoral inflation exceeds

its 75th percentile, 90% of the movements in inflation are due to variation in the
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Table 7: Alternative Values of γ

Data γ = 0 γ = 1 γ = 3

slope of πc
t (s) on πt(s)

all observations 0.80 0.60 0.83 0.91
πt(s) > 75th pct. 0.48 0.10 0.57 0.71

menu costs/sales 0.001 0.010 0.034
losses from misallocation 0.001 0.013 0.043

fraction of price changes relative to the 52% in the data. This version of the model

also predicts very small menu costs, 0.1% of total revenues, and insignificant losses

from misallocation. When γ = 3 the extensive margin fluctuates too little. For

example, when sectoral inflation exceeds its 75th percentile, 29% of the movements in

inflation are due to the extensive margin. This version of the model requires too large

menu costs, 3.4% of revenues, and predicts losses from misallocation that are three

times larger than in our baseline with γ = 1. We therefore conclude that allowing

for a relatively low value of γ and therefore small losses from misallocation inside the

firm is critical for the model to reproduce the role of the extensive margin of price

changes for inflation dynamics, as well as reconcile the evidence that menu costs are

relatively small in an economy that features moderate strategic complementarities.22

5 Real Effects of Monetary Shocks

We next use the model developed above to revisit the classic question in the menu cost

literature: how large are the real effects of monetary policy? That is, how much does

output respond to monetary shocks of various sizes? We show that output responses

in our model are very different than those in the existing models that we showed are

inconsistent with the data. Specifically, in our model output responds non-linearly

to shocks of various sizes. The larger the shock is, the stronger the response of the

22Alvarez and Lippi (2014) also consider a nested CES specification with different elasticities.
They conclude that when the number of products sold by a firm goes to infinity and there are no
common shocks, allowing for different elasticities does not affect the dynamics of the economy. In
contrast, in our setting with common shocks (i.e. shocks to sectoral productivity), allowing for
different elasticities significantly changes the dynamics of the economy in response to large, but not
to small shocks.
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fraction of price changes and therefore the smaller the real effects. Thus, our model

predicts a non-linear Phillips curve.

5.1 Impulse Response to Monetary Shocks

We start by reporting impulse responses to a one-time, unanticipated and permanent

increase of 1% and 10% in the money supplyMt, starting from the ergodic distribution

of price gaps induced by sectoral and idiosyncratic productivity shocks. Figure 7 plots

the impulse response of aggregate output yt in the top row and that of the fraction

of price changes in the bottom row. We compare the impulse responses in our model

and the standard single-product model with σ = 6, η = 2/3 and free price changes.23

To ease comparison, we rescale the y-axis in the output impulse responses by the size

of the shock. We make two points. First, for a small shock of 1% the real effects

of monetary policy are nearly the same in the two models, echoing the findings of

Alvarez and Lippi (2014) who show that these effects are pinned down by the kurtosis

of the distribution of price changes. Second, while in the single-product model the

impulse response scales linearly with the shock, consistent with the findings of Auclert

et al. (2022), in our model a large shock of 10% implies a disproportionately smaller

output response. Not only is the output response on impact smaller in our model

(6.3% vs. 8.9%), but it also shorter lived.

To see why this is the case, the bottom row of Figure 7 shows that, in contrast to

the single-product model, in which the fraction of price changes responds very little

to both small and large shocks, in our model it increases considerably after a large

money shock. For example, though the fraction of price changes responds little to a

money shock of 1%, it jumps on impact to 40% after a 10% money shock.

In Table 8 we zoom in on the impact response of inflation to a money shock ∆m.

We calculate the pass-through of the shock to inflation ∆π/∆m and decompose it

into three channels. Our decomposition, in the spirit of Caballero and Engel (2007)

and Costain and Nakov (2011), starts from the observation that, up to a first-order

approximation, inflation in the absence of the shock is equal to

π =

∫
ωh (ω) df (ω) ,

23In Appendix F we show that the responses in the single-product model are similar to those in
the standard multi-product model.
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Figure 7: Response of Output and Fraction of Price Changes to Money Shock
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where ω is the desired price change, h(ω) is the adjustment hazard and f(ω) is the

ergodic distribution of desired price changes across firms and sectors. The money

shock increases all firms’ desired price changes to ω + α, where

α = x̃∗ − x∗ +∆m,

and where x̃∗ is the average across sectors of the log reset price in the first period

after the money shock and x∗ is the average across sectors of the log reset price in

the absence of the shock. The money shock changes the inflation rate to

π̃ =

∫
(ω + α) h̃ (ω) df (ω) ,

where h̃(ω) is the new adjustment hazard as a function of ω, the desired price change

absent the money shock. The change in inflation ∆π ≡ π̃−π can then be decomposed

into the following three terms

∆π = α

∫
h (ω) df (ω)︸ ︷︷ ︸
Calvo

+α

∫ (
h̃ (ω)− h (ω)

)
df (ω)︸ ︷︷ ︸

frequency

+

∫
ω
(
h̃ (ω)− h (ω)

)
df (ω)︸ ︷︷ ︸

selection

.

The first term, which we refer to as the Calvo term, captures the price increase that

the shock generates if the frequency of price changes were to remain constant at its

steady state level
∫
h (ω) df (ω). The second term, which we refer to as the frequency
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term, captures the price increase resulting from the increase in the frequency of price

changes from its steady state level to
∫
h̃ (ω) df (ω). The final term is the Golosov

and Lucas (2007) selection effect that captures the change in mix of firms that adjust

prices. We note that this is purely an accounting decomposition, as all of these

effects are interdependent. For example, a stronger selection effect leads to more price

flexibility and thus a smaller reduction in the optimal reset price x̃∗ and therefore a

larger Calvo effect.

We make two observations based on the decomposition results in Table 8. First,

for small shocks the models have a similar pass-through to inflation, mostly driven

by the Calvo effect. Moreover, the relative importance of the Calvo, frequency and

selection effects is similar across the two models: in both changes in the frequency

play a negligible role and selection accounts for a quarter of the pass-through. Second,

in our model the pass-through increases rapidly with the size of the shock: from 0.114

for a 1% shock to 0.441 for a 10% shock vs. from 0.128 to 0.145 in the single-product

model. This increase is primarily accounted for by the increase in the frequency of

price changes, while the strength of the Calvo and selection effects remains comparable

to that in the single-product model.

Table 8: Inflation Pass-through to Monetary Shock on Impact

Single-product Our model

1% 10% 1% 10%

total pass-through 0.128 0.145 0.114 0.441

Calvo 0.092 0.096 0.079 0.105
frequency 0.001 0.012 0.006 0.286
selection 0.035 0.037 0.030 0.050

5.2 Non-Linear Phillips Curve

We next investigate how non-linear are the real effects of changes in monetary policy

for a wider range of shocks. Specifically, we consider money shocks that range from

-15% to 15% and report the impact response of the frequency of price changes and

output, as well as the cumulative response of output.
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Figure 8: Impact Response of the Fraction of Price Changes
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Figure 8 shows that though the fraction of price changes is relatively insensitive to

the size of the money shock in the single product model, it responds much more in our

model. Specifically, in the neighborhood of zero the frequency does not respond to

money shocks, but increases fast away from zero. Moreover, the frequency response

is asymmetric: 42% of firms change prices after a 10% increase in the money supply,

and 26% do so after a 10% fall in the money supply. This asymmetry is driven by

the asymmetry in the profit function: sub-optimally low prices are much more costly

than sub-optimally high prices.

Figure 9(a) displays the impact response of output to monetary shocks of various

sizes. In the single product model, the response is nearly linear, reflecting the rela-

tively constant fraction of price changes. In our model, the output response is highly

non-linear. Though the output response is similar to that in the single product model

for shock sizes between -7% and 5%, our model predicts lower real effects for larger

shocks. The output response on impact is also asymmetric in our model, reflecting

the asymmetry in the response of the fraction of price changes: a 15% money shock

leads to only a 2.8% increase in output, whereas a -15% leads to a 8.9% fall in output.

The cumulative impulse responses of output, depicted in Figure 9(b), exhibit a

similar pattern, but the non-linearity of the response in our model is even more

pronounced, a consequence of the lower persistence of the output response in our

model. As can be inferred from Figure 7, the response of output in our model has

a lower half-life. The asymmetry is also present in the cumulative output response:

while a 15% increase in money supply shock has almost no cumulative real effects, a

15% fall in money supply leads to a cumulative fall in output of 36%.

Figure 10 summarizes this discussion by depicting the Phillips curve implied by
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Figure 9: Output Response to Money Shocks
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Figure 10: Phillips Curve, Impact Responses
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the impact responses of output and inflation to the money shocks considered above.

While the Phillips curve is approximately linear in the single product model, it is

highly non-linear in our model. In particular, at low levels of inflation the Phillips

curve in our model has a similar slope as that in the single model, but it becomes

much steeper and eventually vertical at high rates of inflation.

6 Conclusions

We show that canonical menu cost models, when calibrated to match the distribution

of micro price changes, cannot reproduce the strong comovement between the fraction

of price changes and inflation observed in the data. They therefore predict linear

inflation dynamics even in response to large shocks, as in time-dependent pricing
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models with a constant frequency of price changes. Moreover, these menu cost models

require large menu costs and predict large losses from misallocation in the presence

of microeconomic strategic complementarities in price setting.

We propose a resolution to these shortcomings by extending a multi-product menu

cost model along two dimensions. First, we assume that individual products sold by a

given firm are imperfect substitutes. Second, we assume that strategic complementar-

ities are at the firm rather than the product level. Both these assumptions limit the

losses from misallocation from price dispersion within the firm and allow the model

to reproduce the importance of the extensive margin of price changes at high levels

of inflation. The model also implies small menu costs and losses from misallocation,

even in the presence of strategic complementarities.

The key force that drives our results is that within-firm price gap dispersion is

not too costly to the firm. The firm is therefore willing to tolerate large idiosyn-

cratic shocks, reducing their importance relative to aggregate shocks in determining

repricing decisions. We conjecture that any mechanism that reduces within-firm

misallocation will allow the model to simultaneously reproduce the large dispersion

in price changes observed in the data and the sensitivity of repricing decisions to

the level of inflation. Although it is challenging to directly measure the extent of

within-firm misallocation, the observation that firms change prices infrequently and

by large amounts, yet are very responsive to aggregate or sectoral shocks, suggests

that within-firm price dispersion is likely not very costly.

We use the model to study the real effects of monetary policy. In contrast to exist-

ing models, our model predicts a highly non-linear and asymmetric output response

to shocks, owing to a more responsive frequency of price changes. The model implies

that the Phillips curve is nearly vertical when inflation is sufficiently high.
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Appendix

For Online Publication

A Data

A.1 Overview

We use the data that underlie the construction of the Consumer Price Index (CPI) in

the UK. The data are collected by the United Kingdom’s Office for National Statistics

(ONS).1 We use public monthly product-level price quotes and item-level price indexes

from January 1996 to August 2022.

Goods and services are classified following the 6-digit Classification of Individual

Consumption by Purpose (COICOP 6).2 The CPI is produced in stages, with in-

dexes derived at each stage weighted together to give higher level indexes. A sample

of prices of items which are representative of UK consumer expenditure are collected

in line with the COICOP classification system. There are currently around 650 rep-

resentative items in the UK CPI price basket of goods. The items usually have fairly

broad specifications (such as a roll of wallpaper or women’s jeans). Price collectors

choose a selection of products which conform to that item specification. Product-

level price quotes are collected by either sampling individual outlets or are collected

centrally (for example, university tuition fees).

A.2 Weights

Class-level The COICOP class-level weights are largely calculated from household

final consumption expenditure data which covers the relevant population and range

of goods and services and are classified by COICOP. This is supplemented by other

data sources, including the Living Costs and Food Survey (LCF) data, International

Passenger Survey data, and data from Public Sector Branch. The weights used in

compiling the measures of consumer price inflation are updated annually following

1The descriptions in this section are taken from the Consumer Price Indices Technical Manual
published by the ONS and available here.

2COICOP is a hierarchical classification system comprising: Divisions e.g. 01 Food & non-
alcoholic beverages, Groups e.g. 01.1 Food, and Classes (the lowest published level) e.g. 01.1.1
Bread and cereals. See here for a description of the COICOP classification.

1

https://www.ons.gov.uk/economy/inflationandpriceindices/methodologies/consumerpricesindicestechnicalmanual2019
https://www.ilo.org/public/english/bureau/stat/download/cpi/coicop.pdf


ONS reviews of the representative items in the basket, so that the weights reflect

the introduction of new items and the deletion of others. In addition, using up-

to-date expenditure data ensures that the indexes remain representative of current

expenditure patterns over time.

Item-level Some items within a class represent themselves while others represent

a subclass of expenditure within a section. However, other items represent price

changes for a set of items, which are not priced, so for these the weight reflects total

expenditure on all items in the set. The expenditure figures for all items in a section

are expressed as a percentage of the section weight. Each percentage is rounded to

the nearest unit, except where percentages are less than 0.5 which are rounded up

to 1. Manual adjustments are then made by the ONS to constrain the sum of each

section’s item weights to 100.

The item weights are updated twice each year–with the January index when the

new COICOP weights are introduced, and in February when the representative items

that make up the basket of goods and services are updated. When the basket of goods

and services is updated in February, item weights are updated by drawing on data

from a variety of sources. These include detailed National Accounts expenditure data,

LCF data, market research data and other sources including administrative data.

For each COICOP class, the sum of the new item weights introduced in February is

constrained to be equal to the updated class weight introduced in the previous month.

A.3 Sources

We use several datasets published by the ONS to construct our master panel dataset.

1. Price quotes. The price quote data is sourced from the ONS website, which

contains the latest data and the historical data.

2. Item identifier, COICOP classification, and COICOP weights. The item index

data, the classification of items into COICOP classifications and the COICOP

weights are provided by the ONS.

3. Aggregated price indexes. We also use the price indexes published by the ONS

at COICOP-6 and above levels of disaggregation.

2

https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes
https://webarchive.nationalarchives.gov.uk/ukgwa/20160109121317/http://www.ons.gov.uk/ons/rel/cpi/consumer-price-indices/cpi-and-rpi-item-indices-and-price-quotes/rpt-cpi---rpi-item-indices---price-quotes.html
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceindicescpiandretailpricesindexrpiitemindicesandpricequotes
https://www.ons.gov.uk/economy/inflationandpriceindices/datasets/consumerpriceinflation


A.4 Compiling the Dataset

To compile the dataset, we use the following steps.

1. Import data. In this step we generate a dataset of unprocessed price quotes and

a dataset of item-COICOP classifications and CPI weights.

2. Process item-level data and price quotes. In this step we correct for recording

errors and drop price quotes that are invalidated by the ONS. We also use the

algorithm in Blanco (2021) to recover unique price trajectories for price quotes

with the same product-outlet identifier.

3. Merge price quotes data with item identifiers and weights.

Our final master panel dataset is comprised of around 38 million unique price

quote observations from 1996m1 to 2022m8. All statistics and analyses are produced

with this dataset.

A.5 Data Checks

To confirm that the diaggregated price indexes generate the published aggregate CPI

index using the sector-level weights in our dataset we construct

πt =
∑
s

wt(s)πt(s) (15)

where πt is inflation, πt(s) is inflation at the s-sector level of disaggregation, and wt(s)

is the corresponding weight in our dataset. Figure A.1 plots the constructed inflation

rate against the published inflation series.

A.6 Constructing Micro-Price Statistics

We use our master panel dataset to construct the micro-price statistics that we use

to calibrate the model. We apply the following steps in sequence to the dataset:

1. Filters: We drop price changes with a sale flag and noncomparable product

substitution flag. We also drop prices that are centrally collected by the ONS.

We next remove quotes for products that are not observed in the dataset for at

least 6 months. We next drop prices that are not rounded to the nearest cent,

3



Figure A.1: Inflation Rates
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and which could indicate recording errors (see Eichenbaum et al., 2014). We

next drop observations if the number of observations for the item-category is

less than 20. Out of our initial number 37,708,793 unique price quotes, these

filtering steps eliminates 3,639,521 observations.

2. Removing energy products: We drop observations that are classified as “en-

ergy” at the COICOP-6 level, following the ONS classification.3 This removes

381,134 observations.

3. Product-level weights: The weights in our dataset are observed at the item-

date level. We construct product-date level weights by dividing the item-date

weight by the number of quotes observed for that item-date.

4. Regular prices: Since the sales flag is unlikely to cover all sales observed,

we next construct regular prices by applying an algorithm that filters out V-

shaped price series that last less than three months. As we plot in the text,

the aggregate inflation series computed from regular prices is close to the series

computed using posted prices.

5. Standardization: We follow Klenow and Kryvtsov (2008) and calculate for

each price change ∆pit(j) of quote i that belongs to product category j the

3There are five COICOP-6 classifications that are grouped as “energy”: Electricity (04.5.1), Gas
(04.5.2), Liquid fuels (04.5.3), Solid fuels (04.5.4), Fuels and lubricants (07.2.2).

4



standardized price change

∆̂pit(j) =
∆pit(j)− µ∆(j)

σ∆(j)
σ∆ + µ∆,

where µ∆(j) and σ∆(j) are the item-level mean and standard deviation of non-

zero price changes and µ∆ and σ∆ are the overall ones.

6. Remove outliers: Our final step is to remove the top 2% and bottom 2% of

observations based on the normalized price changes.

Table A.1 shows price statistics for different sets of prices from our dataset.4

Removing energy prices drops the frequency of adjustment from 0.18 to 0.17, and

using regular prices drops it further to 0.12. The remaining price statistics are broadly

similar.

We next show in Table A.2 a subset of commonly reported statistics under differ-

ent filtering assumptions to understand how the procedures we use to process the UK

data affects the price statistics. We report the mean absolute value of price changes,

the standard deviation of price changes, the kurtosis of price changes, and the fre-

quency of price changes. In all cases, we remove energy prices, as categorized by the

ONS at the COICOP-6 level. The first row shows the price statistics for all prices.

The remaining rows report the price statistics for regular prices computed under our

algorithm that filters out V-shaped price series that last less than three months (the

baseline filter), and alternatively computed using the regular price algorithm of Kehoe

and Midrigan (2015) (the KM filter). When considering regular prices, we present

statistics for different treatments of observations at the top and bottom of the price

change distribution. In the set of statistics that we target in the baseline estimation,

we remove the top and bottom 2% of observations ordered by the normalized price

changes. In Table A.2 we present results. The bottom rows of Table A.2 show these

statistics, where reported, in other papers (that use different datasets). The results

indicate that the key statistics do not depend on the filter used to produce regular

prices.

4In all cases, we standardize prices at the item level and remove the top 2% and bottom 2% of
outliers.
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Table A.1: Micro Price Statistics

Regular Prices
All Prices No Energy No Energy

frequency ∆p 0.180 0.168 0.116

distribution of ∆p

mean 0.014 0.014 0.018
std. dev. 0.188 0.190 0.188
kurtosis 3.121 3.145 3.609

distribution of |∆p|

10th percentile 0.019 0.019 0.018
25th percentile 0.050 0.050 0.045
50th percentile 0.115 0.115 0.104
75th percentile 0.216 0.217 0.204
90th percentile 0.327 0.330 0.334

Notes: In all cases, we remove the top and bottom 2% outliers.

Table A.2: Price Statistics Across Filters

Mean |∆p| Std Dev ∆p Kurtosis ∆p Freq ∆p

All prices 0.177 0.255 12.270 0.164

Regular prices
- Baseline filter 0.168 0.250 13.987 0.116
- Baseline filter, 2% outliers 0.142 0.188 3.609 0.116
- KM filter 0.167 0.248 13.889 0.093
- KM filter, 2% outliers 0.141 0.186 3.566 0.093

Literature
- Klenow and Kryvtsov (2008) 0.113 – – –
- Nakamura and Steinsson (2008) 0.085 – – 0.087–0.111
- Midrigan (2011) 0.11 – 4.02 0.116
- Karadi and Reiff (2019) 0.099 – 3.98 0.126
- Blanco (2021) 0.153 0.205 3.809 0.126

Notes: For regular prices, the ‘baseline filter’ removes V-shaped sales that last less than 3 months,
and the ‘KM filter’ follows the algorithm in Kehoe and Midrigan (2015). Removing x% outliers drops
the top and bottom x-th percentiles of the data ordered by normalized price changes. Nakamura
and Steinsson (2008) report the median |∆p|. Blanco (2021) reports statistics for the UK. Karadi
and Reiff (2019) reports statistics for Hungary.
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B Solution Method

In the presence of strategic complementarities in price setting the firms’ optimal pric-

ing decisions depend on the price of their competitors. Recall that the assumptions

we make on preferences imply that the problem of a firm in a given sector depends

only on the current and future sectoral price gaps xt(s). We follow the approach of

Krusell and Smith (1998) and postulate that xt(s) is a function of a single moment

of the distribution of firm state variables. Specifically, the moment we use is

x̂t(s) ≡ āη
et(s)

Mt

Pt−1(s),

the previous period’s price level, scaled by the money supply and sectoral productiv-

ity.5 We postulate that the sectoral price gap depends on this state variable according

to

xt(s) = X (x̂t(s)) .

Given the function X (·), x̂t(s) evolves according to

x̂t+1(s) =
et+1(s)

et(s)

Mt

Mt+1

X (x̂t(s)) .

We use the Krusell and Smith (1998) approach to pin down X (·). In particu-

lar, we parameterize X (·) using Chebyshev polynomials in order to capture potential

non-linearities. For any given guess of X (·), we solve the firm’s decision rules, sim-

ulate histories of sectoral productivity shocks, and find the sectoral price gap xt(s)

that is consistent with the firms’ decision rules. We then use projection methods to

update our guess of X (·) using simulated data on xt(s) and x̂t(s), and iterate until

convergence. We find that the Krusell and Smith (1998) approach works well in both

the single- and multi-product models, with an R2 in the perceived law of motion in

excess of 0.999.

5Equivalently, x̂t(s) =

(∫ ( zt−1(f,s)
zt(f,s)

)1−σ

x̂t(f, s)
1−σdf

) 1
1−σ

.
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C An Economy With Idiosyncratic Productivity

Shocks

We describe an economy in which idiosyncratic shocks are shocks to productivity,

as opposed to quality. We show that the firm’s problem is nearly isomorphic to

the problem of a firm in our baseline model provided one rescales the menu cost

appropriately.

We now suppose that the technology for aggregating individual products into a

final sector good is

yt (f, s) =

(∫
yit (f, s)

γ−1
γ di

) γ
γ−1

and

yt (s) =

(∫
yt (f, s)

σ−1
σ df

) σ
σ−1

.

Notice that we no longer have taste shifters in these aggregators. The demand func-

tions are therefore

yit (f, s) =

(
Pit (f, s)

Pt (f, s)

)−γ

yt (f, s)

yt (f, s) =

(
Pt (f, s)

Pt (s)

)−σ

yt (s) .

As earlier, the production function is

yit (f, s) = et (s) zit (f, s)mit (f, s) lit (f, s)
η ,

and the optimal choice of the specific factor mit implies that the total amount of labor

the firm needs to produce the bundle yit(f, s) is

lt (f, s) =

(∫
yit (f, s)

et (s) zit (f, s)
di

) 1
η

.

Notice that now zit(f, s) represents a product-specific productivity shock. Firm profits

are

∞∑
t=0

βt

Ptct

[
(1 + τ)

∫
Pit (f, s) yit (f, s) di−Wt

(∫
yit (f, s)

et (s) zit (f, s)
di

) 1
η

−Wtξt(f, s)It(f, s)

]
,

8



where we now assume that the fixed cost of changing prices ξt(f, s) depends on the

firm’s productivity, as we discuss below. Absent such rescaling, firms whose produc-

tivity grows over time would face smaller menu costs relative to their profits and no

longer be subject to pricing frictions.

To show that in this environment the problem of the firm is similar to that in our

baseline model, let us define the several objects. First, the first-best level of a firm’s

productivity is

zt (f, s) =

(∫
zit (f, s)

γ−1 di

) 1
γ−1

.

This evolves over time according to

zt (f, s) = zt−1 (f, s) exp

(
(γ − 1)

σ2
z

2

)
,

given our assumption that individual productivity evolves according to a geometric

random walk process with Gaussian innovations. We can write the firm’s production

function as

yt (f, s) = et (s) zt (f, s)ϕt (f, s) lt (f, s)
η ,

where ϕt(f, s) represents the losses from misallocation inside the firm, given by

ϕt (f, s) =

(∫
zt (f, s)

zit (f, s)

(
Pit (f, s)

Pt (f, s)

)−γ

di

)−1

.

Also let

zt (s) =

∫ zt (f, s)

(σ−1) 1η

1+σ( 1
η−1) df


1+σ( 1

η−1)
(σ−1) 1η

denote the sectoral weighted average of individual firm’s composite productivities.

This term also evolves over time according to a deterministic trend.

We define the price gaps as follows. The sectoral price gap is given by

xt (s) = āη
et (s) zt (s)Pt (s)

Mt (s)
.

9



The firm-level price gap is given by

xt (f, s) = āη
et (s)ut (s)

(
ũt(f,s)
ut(s)

) 1
η

1+σ( 1
η−1) Pt (f, s)

Mt (s)
.

The product-level price gap is given by

xit (f, s) = āη
et (s) zt (s)

(
zt(f,s)
zt(s)

) 1
η

1+σ( 1
η−1) zit(f,s)

zt(f,s)
Pit (f, s)

Mt (s)
.

We assume that the menu cost scales with the firm’s productivity

ξ̄t(f, s) =

(
zt (f, s)

zt (s)

) (σ−1) 1η

1+σ( 1
η−1)

.

This assumption ensures that the menu cost is equal to a constant fraction of the

firm’s (flexible price) profits, so they do not vanish for firms that grow increasingly

large. We can then rewrite the firm’s objective as

∞∑
t=0

βt

(
zt (f, s)

zt (s)

) (σ−1) 1η

1+σ( 1
η−1)

[
(1 + τ)

(
xt (f, s)

xt (s)

)1−σ

− at (s)ϕt (f, s)
− 1

η

(
xt (f, s)

xt (s)

)−σ
η

− ξ̄t(f, s)It(f, s)

]
.

This objective is nearly identical to that in the baseline model with quality shocks,

except that we have an additional term due to firm productivity growth affecting

the discount factor. In addition, since we scale prices by different terms involving

productivity, the law of motion for price gaps changes accordingly.

We finally note that if the firm does not adjust prices, misallocation inside the

firm is equal to

ϕt (f, s) =

(∫
zt (f, s)

zit (f, s)

(
Pit (f, s)

Pt (f, s)

)−γ

di

)−1

=

(∫
zit (f, s)

−1 di
)−1

zt (f, s)
,

and evolves over time according to the same law of motion as in our baseline model

with quality shocks

ϕt (f, s) = ϕt−1 (f, s) exp

(
−γ

σ2
z

2

)
.
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D A Flexible Distribution of Menu Costs

In our baseline analysis we assumed that menu costs are drawn from a uniform dis-

tribution. Here, we consider a more flexible distribution

F (ξ) =

(
ξ

ξ̄

)ν

,

which collapses to the uniform distribution when ν = 1 and is degenerate at ξ̄ when

ν → ∞. We calibrate the parameters of the model to match the same targets as

in the baseline and also target the percentiles of the distribution of the size of price

changes that were untargeted in the baseline.

Table D.3 reports the results of this calibration. For comparison, we also calibrate

a model with a uniform menu cost distribution to match the same targets. As the

table shows, the value of ν that best reproduces the data is very close to one, so the

uniform distribution fits the data just as well as the flexible one. For this reason, we

focus on a uniform menu cost distribution throughout the paper.

E Single-Product Model in Continuous Time

This section analyzes the model presented in Section 3 in continuous time. We assume

gm = 0, so the money supply is constant.

E.1 Environment

Household and Final Goods Producers. The problem of households and

final goods producers is as in Section 3.

Intermediate Goods Producers. The intermediate goods producer faces the

same production technology as in Section 3. The technology for changing prices

is as follows: in a period of length dt, the firm faces a non-random menu cost ξ̄

denominated in units of labor with probability 1 − φdt and a zero menu cost with

probability φdt. The firm chooses a sequence of price adjustment dates {Th}∞h=1 and

log-price adjustments {∆ph}∞h=1. For a given firm-level log price gap x̂ and a sectoral

11



Table D.3: Parameterization with A Flexible Menu Cost Distribution

A. Targeted Moments

Data Flexible Uniform

fraction ∆p 0.116 0.115 0.116
mean ∆p 0.018 0.018 0.019
std. dev. ∆p 0.188 0.192 0.192
kurtosis ∆p 3.609 3.613 3.613
std dev. πt(s) 0.029 0.029 0.029

distribution of |∆p|

10th percentile 0.018 0.021 0.021
25th percentile 0.045 0.054 0.054
50th percentile 0.104 0.120 0.120
75th percentile 0.204 0.219 0.218
90th percentile 0.334 0.321 0.321

B. Calibrated Parameter Values

Flexible Uniform

gm mean money growth rate 0.021 0.022
σz s.d. idios. shocks 0.066 0.066
ξ̄ upper bound menu cost 40.41 40.64
σe s.d. sectoral shocks 0.011 0.011
ν menu cost curvature 1.005

Note: The money growth rate is annualized and the menu cost is relative to average sales.

log price gap X̂, the sequential formulation of the firms’ problem is

V X̂(x̂) = max
{Th,∆ph}∞h=1

E0

[∫ ∞

0

e−ρtΠt(s, f) dt−
∞∑
i=1

ξTh
(f, s)

]
, (16)

where the flow profit function is given by

Πt(s, f) = eX̂t(s)(σ−1)
(
(1 + τ)e(x̂t(s,f)−X̂t(s))(1−σ) − āeX̂t(s)( 1

η
−1)(σ−1)e−

σ
η
x̂t(f,s)

)
,

12



subject to the law of motion of firm price gap

x̂t(f, s) = constant + x̂+ log(et(s)) + log(zt(f, s)) +
∑

h:Th≤t

∆ph

and the law of motion of the sectoral price gap X̂t(s) with initial condition X̂.

E.2 Cost of Price Rigidity

We compute the cost of price rigidity under the assumption that σe = 0, i.e., there are

no sectoral shocks. Moreover, since sectors are identical, without loss of generality

we omit the sectoral index. Let V X̂(x̂) be the optimal firm value defined in equation

(16). The flow profit function ΠX̂(x̂) in a sector with sectoral (log) price gap X̂ and

firm-level (log) price gap x̂ is given by

ΠX̂(x̂) := eX̂(σ−1)
(
(1 + τ)e(x̂−X̂)(1−σ) − āeX̂(

1
η
−1)(σ−1)e−

σ
η
x̂
)
. (17)

Given the definition of the flow profits in equation (17), we can write the firm’s value

as

V X̂(x̂) = max
τ

E
[∫ τ

0

e−ρtΠX̂(x̂t) dt+ e−ρτ
[
ξτ +max

x̂∗
V X̂(x̂∗)

]
|x̂0 = x̂

]
. (18)

The next propositions characterize the costs of price rigidity. First, we characterize

the losses from misallocation due to price dispersion. Second, we characterize the size

of the menu cost.

Let E[x̂m] denote the m-th moment of the log price gap distribution and V[x̂]
denote its variance. Similarly, E[∆pm] denotes the m-th moment of the log price

change distribution and V[∆p] = E[∆p2] − E[∆p]2 and K[∆p] = E[∆p4]
E[∆p2]2

denotes the

variance and kurtosis of the price change distribution, respectively. Finally, n denotes

the fraction of price changes and E[τ ] the average duration between price changes.

From now on, we consider a quadratic approximation of firms’ flow profits around

the optimal static log price gap. This approximation implies a symmetric value

function around the optimal price gap and therefore a symmetric policy function. Let

(x̂−, x̂∗, x̂+) be the optimal policy, characterized by the lower and upper adjustment

thresholds x̂− and x̂+, and the reset price x̂∗. We normalize the units in which we

express the price gap to ensure that the optimal reset price is zero. Moreover, the

13



symmetry of the value function implies that−x̂− = x̂+ = x̄. The following proposition

characterizes the quadratic approximation of the profit function.

Proposition 1. Define

x̂∗(X̂) = argmax
x̂

ΠX̂(x̂). (19)

Then, up to a second-order approximation,

ΠX̂(x̂) = ΠX̂(x̂∗(X̂)) +
1

2

∂2ΠX̂(x̂)

∂x̂2

∣∣∣∣∣
x̂=x̂∗(X̂)

(x̂− x̂∗(X̂))2 +O
(
(x̂− x̂∗(X̂))3

)
, (20)

where the optimal reset price is given by

x̂∗(X̂) =
η

η + σ(1− η)
log

(
σ

(1 + τ)(σ − 1)η

)
+

(σ − 1)(1− η)

η + σ(1− η)
X̂. (21)

and the level and curvature of the profit function are given by

ΠX̂(x∗(X̂)) = e

(
σ−1− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

(1 + τ)
η + σ(1− η)

σ

(22)

∂2ΠX̂(x̂)

∂x̂2

∣∣∣∣∣
x̂=x̂∗(X̂)

= −e

(
σ−1− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

(1 + τ)(σ − 1)
η + σ(1− η)

η

(23)

and the revenue is equal to

eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂) = e

(
(σ−1)− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

(1 + τ)

(24)

Proof. The first-order condition for the profit function

ΠX̂(x̂) = eX̂(σ−1)
[
(1 + τ)e(1−σ)x − e(σ−1) 1−η

η
X̂e−

σ
η
x
]

(25)

is given by

0 = (1 + τ)(1− σ)e(1−σ)x̂ +
σ

η
e(σ−1) 1−η

η
X̂e−

σ
η
x̂, (26)
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which implies an optimal markup

x̂∗(X̂) =
η

η + σ(1− η)
log

(
σ

(1 + τ)(σ − 1)η

)
+

(σ − 1)(1− η)

η + σ(1− η)
X̂. (27)

Therefore,

ΠX̂(x∗(X̂)) = eX̂(σ−1)
[
(1 + τ)e(1−σ)x̂∗(X̂) − e(σ−1) 1−η

η
X̂e−

σ
η
x̂∗(X̂)

]
= e

(
(σ−1)− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η) η + σ(1− η)

σ
(1 + τ)

(28)

and

∂2ΠX̂(x̂∗(X̂))

∂x̂2
= −e

(
(σ−1)− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

(1 + τ)(σ − 1)
η + σ(1− η)

η
.

(29)

Finally, the revenue is given by

eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂) = eX̂(σ−1)(1 + τ)

(
σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

e

(
− (σ−1)2(1−η)

η+σ(1−η)

)
X̂

= e

(
(σ−1)− (σ−1)2(1−η)

η+σ(1−η)

)
X̂
(

σ

(1 + τ)(σ − 1)η

) η(1−σ)
η+σ(1−η)

(1 + τ)

(30)

Proposition 2. Aggregate productivity is approximately equal to

log(ϕ) ≈ −σ(η + (1− η)σ)

η
V[x̂] = −σ

2

(
1 + σ

(
1

η
− 1

))
V[∆p]K[∆p]

6
(31)

Proof. Recall that we can write aggregate productivity as

ϕ =

(∫
f

e−
σ
η (x̂f−X̂) df

)1/η

. (32)
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Using the same approximation as in Gali (2008), we have that

log(ϕ) ≈ −σ(η + (1− η)σ)

2η
V[x̂]. (33)

Because the profit function is symmetric, we have that x̂∗(X̂) = E[x̂]. With this

result, we can use Corollary 3 of Baley and Blanco (2021), and the definition of

kurtosis, we have that

V [x̂] =
1

6

E[∆p4]

E[∆p2]
=

1

6
E[∆p2]K[∆p]. (34)

Putting these two results together, we have

log(ϕ) ≈ −σ

2

(
1 + σ

(
1

η
− 1

))
E[∆p2]K[∆p]

6
= −σ

2

(
1 + σ

(
1

η
− 1

))
V[∆p2]K[∆p]

6
,

(35)

where the last equality uses that when the drift is zero, E[∆p] = 0 and E[∆p2] =

V[∆p2] (Baley and Blanco, 2021).

Proposition 3. The total amount paid on menu costs, expressed as a fraction of

revenue, is approximately equal to

nE[ξτ ]
eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂)

= (σ − 1)

[
1 + σ

(
1

η
− 1

)]
V[∆p]Ψ(K[∆p])

12
(36)

where Ψ(1) = 1, Ψ(6) = 0, and increasing-decreasing in its argument.

Proof. Under the assumption of the CalvoPlus model, we can write nE[ξτ ] as

nE[ξτ ] =
n− φ

n

(
nξ̄
)
. (37)

The normalized upper adjustment threshold x̄ is

x̄ =

(
12σ2

uξ̄

ΠX̂
x̂2(x̂∗(X̂))

)1/4

. (38)

Using that σ2
z = nE[∆p2] if the drift is equal to zero (see Proposition 1 in Alvarez et
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al., 2016) we have

nξ̄ = E[∆p2]
ΠX̂

x̂2(x̂∗(X̂))

12

(
x̄2

E[∆p2]

)2

, (39)

we have that

nE[ξτ ] =
n− φ

n

(
nξ̄
)
= E[∆p2]

ΠX̂
x̂2(x̂∗(X̂))

12

[
n− φ

n

(
x̄2

E[∆p2]

)2
]
. (40)

We next show that the last term is only a function of φx̄2

σ2
z
. Using the result that

φx̄2

σ2
z

is a function of kurtosis (see Proposition 6 in Alvarez et al., 2016), implies that

the last term is only a function of the kurtosis, which will complete the proof of the

Proposition.

Let P(x̂) and D(x̂) be the solutions of the following differential equations

φP(x̂) =
σ2
z

2
P ′′(x̂), P(x̄) = P(−x̄) = 1, (41)

φD(x̂) = φ

(
−x̂

x̄

)2

+
σ2
z

2
D′′(x̂), D(x̄) = 1,D(−x̄) = 1. (42)

It is easy to check that P(0) = n−φ
n

and D(0) =
E[∆p2]

x̄2 . Using these definitions and

letting ẑ = x̂/x̄, we can normalize P(·) and D(·) as P̃(ẑ) := P (ẑx̄) and D̃(ẑ) :=

D (ẑx̄) . Doing a change of variable, we have that

φP̃(ẑ) =
σ2
z

2x̄2
P̃ ′′(ẑ), P̃(1) = P̃(−1) = 1, (43)

φD̃(ẑ) = φẑ2 +
σ2
z

2x̄2
D̃′′(ẑ), D̃(1) = D̃(−1) = 1. (44)

Letting Φ = φ2x̄2

σ2
z

ΦP̃(ẑ) = P ′′(ẑ), P̃(1) = P̃(−1) = 1, (45)

ΦD̃(ẑ) = Φẑ2 + D̃′′(ẑ), D̃(1) = D̃(−1) = 1, (46)

with P̃(0) = n−λ
n

and D̃(0) = E[∆p2]
x̂2 . Since Φ is a strictly decreasing function of the

kurtosis of price changes, we have that P̃(0)

D̃(0)2
= Ψ(K[∆p]). It is easy to check that

Ψ(1) = 1 and Ψ(6) = 0 and that the function is increasing-decreasing in its argument.
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Thus, we have that

nE[ξτ ] = E[∆p2]
ΠX̂

x̂2(x̂∗(X̂))

12
Ψ(K[∆p]). (47)

Dividing by the revenue, we have that

nE[ξτ ]
eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂)

= E[∆p2]
ΠX̂

x̂2(x̂∗(X̂))

12eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂)
Ψ(K[∆p])

= E[∆p2](σ − 1)
η + σ(1− η)

12η
Ψ(K[∆p])

= E[∆p2]
σ − 1

12

[
1 + σ

(
1

η
− 1

)]
Ψ(K[∆p]). (48)

Finally, since E[∆p] = 0, we have that E[∆p2] = V[∆p] and

nE[ξτ ]
eX̂(σ−1)(1 + τ)e(1−σ)x̂∗(X̂)

= V[∆p]
σ − 1

12

[
1 + σ

(
1

η
− 1

)]
Ψ(K[∆p]). (49)

E.3 The Effect of a Sectoral Shock on the Fraction of Price

Changes

We next characterize the impact effect of a sectoral productivity shock of size δ on

the fraction of price changes n. Let ∆n(δ) be the change in the fraction of price

changes upon such a shock. The next proposition characterizes this object under the

assumption that equilibrium policies are unchanged.

Proposition 4. Let l be the fraction of free price changes in the steady state, i.e.,

l = φ
n
. Then

∆n(δ) =
1− l

2

δ2

V[∆p]
+O(δ4) (50)

Proof. Let St(δ) be the mass of firms without a price change following a sectoral

shock of size −δ which decreases the price gap by δ. We refer to St(δ) as the survival

function t periods following the shock. Then, on impact,

∆n(δ) = 1− S0(δ), (51)
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since there is a positive mass of firms changing their price on impact. The survival

function at time 0 is given by

S0(δ) =

∫ x̄

−x̄

f(x̂+ δ) dx̂, (52)

where f(x̂) satisfies the Kolmogorov forward equation with boundary conditions

φf(x̂) =
σ2
z

2

d2f(x̂)

dx̂2
∀x̂ ∈ (−x̄, x̄)/{0}, (53)

f(±x̄) = 0 ∀x̂ /∈ [−x̄, x̄], (54)∫
R
f(x̂) = 1, (55)

f(x̂) ∈ C(R) ∩ C2((−x̄, x̄)). (56)

Notice that above we wrote the price gap as the difference from its mean. Using a

fourth-order Taylor approximation we have

S0(δ) = S0(0) +
dS0(0)

dδ
δ +

1

2!

d2S0(0)

dδ2
δ2 +

1

3!

d3S0(0)

dδ3
δ3 +O(δ4) (57)

We next characterize each term in this approximation. From now on, without loss

of generality, we assume that δ > 0 and evaluate these terms by taking the limit as

δ ↓ 0.

Order-zero: Using the boundary condition (55)

S0(0) =

∫ x̄

−x̄

f(x̂) dx̂ = 1. (58)

First-order: Using a change of variables and imposing that f(x̂) = 0 for all x̂ < −x̄,

we have that

S0(δ) =

∫ x̄

−x̄

f(x̂+ δ) dx̂ =

∫ x̄−δ

−x̄−δ

f(x̂) dx̂ =

∫ x̄−δ

−x̄

f(x̂) dx̂. (59)
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Applying the Leibniz rule

S ′
0(δ) = −f(x̄− δ), (60)

S ′
0(0) = − lim

x̂↑x̄
f(x̂) = 0, (61)

where the last equation uses the boundary conditions (54) and (56).

Second-order: Observe that

S ′′
0 (δ) = f ′(x̄− δ) (62)

and taking the limit, S ′′
0 (0) = limx̂↑x̄ f

′(x̂). We now characterize limx̂↑x̄ f
′(x̂). Since

the fraction of price change satisfies

n = φ+
σ2
z

2

(
lim
x̂↓−x̄

f ′(x̄)− lim
x̂↑x̄

f ′(x̄)

)
, (63)

using symmetry f(x̂) = f(−x̂) if and only if f ′(x̂) = −f ′(−x̂), we have that

−(n− φ)

σ2
z

= S ′′
0 (0). (64)

Using the fact that σ2
z = nE[∆p2]

S ′′
0 (0) = − (n− φ)

nE[∆p2]
. (65)

Third-order: Using the boundary conditions (53) and (56)

S ′′′
0 (δ) = −f ′′(x̄− δ) = −2φ

σ2
z

f(x̄− δ) (66)

with S ′′′
0 (0) = 0.

Taking all the results together,

S0(δ) = 1− n− φ

2n

δ2

E[∆p2]
+O(δ4). (67)

Thus,

∆n(δ) =
1− l

2

δ2

V[∆p]
+O(δ4). (68)
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F Additional Figures and Tables

Figure F.2 shows the distribution of price changes implied by the baseline single-

product model and compares it to the data. Tables F.4 and F.5 report the pa-

rameterization of the single-product models with and without free price changes, for

different values of σ and η. Table F.6 reports the calibration results when we consider

alternative values of γ in our multi-product model. Figure F.3 plots the fraction of

price changes in our model and the standard multi-product model for money shocks

ranging from -15% to 15%. Figures F.4(a) and F.4(b) display the impact and cumu-

lative output response to these shocks.

Figure F.2: Distribution of Price Changes
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data
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Table F.4: Parameterization of Single-Product Model with Free Price Changes

A. Moments

Data σ = 6 σ = 3
η = 1 η = 2/3 η = 1

I. Targeted

frequency ∆p 0.116 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018 0.018
std. dev. ∆p 0.188 0.188 0.188 0.188
kurtosis ∆p 3.609 3.609 3.609 3.609
std dev. πt(s), % 2.870 2.870 2.870 2.870

II. Not targeted

distribution of |∆p|

10th percentile 0.018 0.020 0.020 0.019
25th percentile 0.045 0.052 0.051 0.051
50th percentile 0.104 0.116 0.114 0.114
75th percentile 0.204 0.213 0.211 0.210
90th percentile 0.334 0.316 0.317 0.318

B. Calibrated Parameter Values

σ = 6 σ = 3

η = 1 η = 2/3 η = 1

gm mean money growth rate 0.021 0.020 0.021
σz s.d. idios. shocks 0.064 0.064 0.064
λ 1 - prob. free change 0.909 0.907 0.907
ξ̄ upper bound menu cost 12.11 18.91 7.924
σe s.d. sectoral shocks 0.010 0.011 0.010

Note: The money growth rate is annualized. In all calibrations, we set β = 0.96 (annualized).
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Table F.5: Parameterization of Single-Product Model with no Free Price Changes

A. Moments

Data σ = 6 σ = 3
η = 1 η = 2/3 η = 1

I. Targeted

frequency ∆p 0.116 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018 0.018
std. dev. ∆p 0.188 0.188 0.188 0.188
kurtosis ∆p 3.609 1.931 1.839 1.819
std dev. πt(s), % 2.870 2.870 2.870 2.870

II. Not targeted

distribution of |∆p|

10th percentile 0.018 0.079 0.079 0.079
25th percentile 0.045 0.116 0.116 0.115
50th percentile 0.104 0.165 0.165 0.165
75th percentile 0.204 0.221 0.221 0.221
90th percentile 0.334 0.274 0.277 0.277

B. Calibrated Parameter Values

σ = 6 σ = 3

η = 1 η = 2/3 η = 1

gm mean money growth rate 0.022 0.021 0.021
σz s.d. idios. shocks 0.064 0.064 0.064
ξ̄ upper bound menu cost 0.908 1.228 0.501
σe s.d. sectoral shocks 0.009 0.010 0.009

Note: The money growth rate is annualized. We do not target the kurtosis and italicize its implied

value. In all calibrations, we set β = 0.96 (annualized).
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Table F.6: Alternative Parameterizations of Our Multi-Product Model

A. Moments

Data γ = 0 γ = 3

I. Targeted

fraction ∆p 0.116 0.116 0.116
mean ∆p 0.018 0.018 0.018
std. dev. ∆p 0.188 0.188 0.188
std dev. πt(s) 0.029 0.029 0.029

II. Not targeted

kurtosis ∆p 3.609 4.480 3.722

distribution of |∆p|

10th percentile 0.018 0.019 0.021
25th percentile 0.045 0.050 0.054
50th percentile 0.104 0.109 0.116
75th percentile 0.204 0.199 0.208
90th percentile 0.334 0.309 0.311

B. Calibrated Parameter Values

Our model Standard

gm mean money growth rate 0.022 0.023
σz s.d. idios. shocks 0.063 0.063
ξ̄ upper bound menu cost 0.057 3.178
σe s.d. sectoral shocks 0.010 0.011

Note: The money growth rate is annualized and the menu cost is relative to average sales.
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Figure F.3: Impact Response of the Fraction of Price Changes
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Figure F.4: Output Response to Money Shocks

(a) Response on Impact

-15 -10 -5 0 5 10 15

money shock, %

-15

-10

-5

0

5

10

15

%

standard model

our model

(b) Cumulative Response
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