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Abstract

We study an economy’s response to an unexpected epidemic. The spread of the disease can

be mitigated by reducing consumption and hours worked in the office. Working from home

is subject to learning-by-doing. Private agents’ rational incentives are relatively weak and

fatalistic. The planner recognizes infection and congestion externalities and implements front-

loaded mitigation. Under our calibration, the planner reduces cumulative fatalities by 48%

compared to 24% by private agents, albeit with a sharper consumption drop. Our model can

replicate key industry/occupation-level patterns and explains how large variation in outcomes

across regions can stem from small initial differences.

Keywords: contagion, containment, covid 19, recession, R0, social distancing, SIR model, learning-
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1 Introduction

The response to the Covid-19 crisis highlights the tension between health and economic outcomes.

We propose a simple extension of the neoclassical model to quantify the trade-offs and guide policy.

We are particularly interested in understanding the nature and timing of policy responses as well
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as the tensions between private and public incentives. When will the private sector engineer the

right response in terms of timing and magnitudes? When is there a need for policy intervention?

Our model has two building blocks: one for the dynamics of contagion, and one for consumption

and production, including mitigation strategies (such as working from home). Our starting point is

the standard SIR model of contagion used by public health specialists. Atkeson (2020b) provides

a good summary of this framework. In a population of initial size N , the epidemiological state is

given by the numbers of Susceptible (S), Infected (I), and Recovered (R) people. By definition, the

cumulative number of deaths is D = N−S−I−R. Infected people transmit the virus to susceptible

people at a rate that depends on the nature of the virus and on the frequency of economic and social

interactions. Mitigation efforts in the form of lockdowns and work-from-home reduce interactions

and curtail the spread of the disease. The rates of recovery (transitions from I to R), morbidity (I

becoming severely or critically sick) and mortality (from I to D) depend on the nature of the virus

and on the quality of health care services. The quality of health services depends in turn on the

capacity of health care providers (number of ICU beds, ventilators) and the number of sick people.

The economic side of the model focuses on three key decisions: consumption, labor supply,

and working from home. We use a canonical macroeconomic framework with a representative

household. Both consumption and work increase the risk of contagion, which is the key link

between the economic and epidemiological blocks of the model. We endow agents with the option

to undertake exposure-mitigating actions (e.g. working from home) that reduce contagion risk

but lower productivity. Productivity losses decline as agents accumulate experience in working

from home. This learning-by-doing aspect introduces additional dynamic considerations in the

household’s problem.

We use a calibrated version of the model to study the reaction of private agents and a social

planner to the announcement of an outbreak. Upon learning of the risks posed by the virus,

households cut spending and labor supply and increase time spent working from home. Their

mitigation efforts are approximately proportionate to the risk of infection, which – all else equal

– is proportional to the fraction of infected agents I/N . The planner’s response differs from the

response of private agents because of two externalities. The first is the usual infection externality:

households only take into account the risk that they become infected, not the risk that they infect

others. The other is is a congestion externality in healthcare: agents do not internalize the fact that
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the treatment they receive if they become sick reduces the amount of healthcare services available

for other agents. Both these factors make private mitigation lower than the socially optimal level.

We show that this wedge between private and social incentives can be particularly severe early on in

the outbreak. When private agents become aware of the disease, the possibility of future infection

reduces the value of being careful today. We term this the fatalism effect. The planner, on the

other hand, internalizes the possibility of infecting others and a congested healthcare system and,

as a result, her incentives to avoid infection increase sharply when she learns of the disease.

Our quantitative results show that this wedge has significant implications for the evolution of

both macro and health outcomes. In equilibrium, the representative household’s private response

closely tracks the path of the infection rate. At the peak, labor supply drops by about 7%, while

27% of workers work from home. The result is a time-path for infections that peaks at the same time

as the zero-mitigation time-path, albeit at a lower level. The decentralized equilibrium features

significant congestion in healthcare at the peak of the epidemic when the fatality rate is just over

double the baseline level. The ultimate cumulative deaths is over 0.33% of the population. The

planner, on the other hand, acts more quickly and aggressively to flatten the curve – both by

cutting labor supply by a bit more (12%) as well as prescribing stronger mitigation (work-from-

home ratio of 50% at the height). The infection rate peaks a few weeks later and at a much lower

level than that of the equilibrium level. The peak fatality rate and the cumulative fatalities are

also significantly reduced. The ability to mitigate by working from home plays a significant role in

ameliorating the economic impact of the mitigation strategies. While this is true in both cases, the

planner uses this option much more intensively than private agents would. Without the option to

work from home, the planner’s optimal strategy would have a peak drop in consumption of almost

25% (compared to 15% in the baseline model). Working from home is therefore a critical element

of the public response to the epidemic.

The quantitative predictions of the model are consistent with the outcomes observed in the

state of New York. From March to September 2020, GDP in New York fell by 10.5% relative to

trend while cumulative excess deaths were 0.21% of the population. Under the optimal solution in

our model, over the first 26 weeks, the average decline in GDP from the pre-pandemic state is 12%

while about 0.17% of the initial population die from the disease.

We then use disaggregated sector-level data to further test the predictions of the model. We first
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extend our model by considering multiple sectors which differ in their exposure risks and the cost

of working from home. We find that the optimal path of mitigation matches well the cross-sectoral

patterns in both epidemiological and economic outcomes. By week 26 after the outbreak of the

pandemic, the sectors with the highest exposure risk account for 64% of cumulative infections and

have a decline in GDP of about 10%. This prediction is consistent with data from Washington

state where, in 2020 Q2 and Q3, the high infection sector accounts for 65% of cumulative infections

and had a decline in GDP of 8%.

We then examine the robustness of our main results to assumptions about parameters (notably

the fatality rate) and the arrival of news about the disease. We explore the planner’s incentives

to mitigate under time-varying parameters and when we explicitly model fatigue associated with

mitigation efforts. We also consider a version of the model with altruistic households and find

that a high degree of altruism is necessary to get close to the planner’s outcomes. Finally, we use

the model to guide decision-making under uncertainty about key epidemiological parameters (the

reproduction number and the fatality rate). The analysis reveals that, despite this uncertainty,

the planner can get quite close to her optimal strategy by actively suppressing the disease in its

early stages while waiting for incoming data to resolve the uncertainty. Intuitively, this is possible

because her optimal strategy in the first few weeks remains quite similar across a wide range of

fatality and infection parameters.

Literature There are a number of papers studying the trade-off between economic and health

outcomes in the context of the Covid-19 pandemic. It is impossible to cite every paper from this

large body of work, so we restrict ourselves to the most closely related early ones – Barro et al.

(2020), Eichenbaum et al. (2020) and Alvarez et al. (2020). Barro et al. (2020) and Correia et al.

(2020) draw lessons from the 1918 flu epidemic. Barro et al. (2020) find a high death rate (about

40 million people, 2% of the population at the time) and a large but not extreme impact on the

economy (cumulative loss in GDP per capita of 6% over 3 years). The impact on the stock market

was small. Correia et al. (2020) find that early interventions help protect health and economic

outcomes. Our paper also relates to an older literature on contagion dynamics, e.g. (Diekmann

and Heesterbeek, 2000). We refer to the reader to Atkeson (2020b) for a recent discussion. Berger

et al. (2020) show that testing can reduce the economic cost of mitigation policies as well as reduce
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the congestion in the health care system. Baker et al. (2020) document the early consumption

response of households in the US.

Our model shares with Eichenbaum et al. (2020) the idea of embedding SIR dynamics in a

simple macroeconomic framework. The SIR block is the same, but there are some notable differences

in the economic model. Eichenbaum et al. (2020) consider hand-to-mouth agents who know their

health status, while we use a representative household framework in the tradition of Lucas and

Stokey (1987), where both consumption and health risks are pooled, and asymptomatic agents are

unaware of their status. We also allow for a distinct margin of mitigation, interpreted as work-

from-home, along with a learning-by-doing structure, which adds an important dynamic element.

By mitigating today, the planner invests in the new technology to mitigate future disruptions. We

also highlight the dynamic tension (the so-called fatalism bias) between the planner and the private

sector’s incentives.

2 Benchmark Model

2.1 Households

There is a continuum of mass N of households, and time is measured in weeks. Each household is

of size 1 and the utility of the household is

U =
∞∑
t=0

βtu (ct, lt; it, dt) ,

where ct and lt are per-capita consumption and labor supply. The household starts with a continuum

of mass 1 of family members, all of them susceptible to the disease. At any time t > 0, we denote

by st, it and dt the numbers of susceptible, infected and dead people. The size of the household

at time t is therefore 1− dt, and total household consumption is (1− dt) ct. Among the it infected

members, κit are too sick to work. The labor force at time t is therefore 1−dt−κit, and household

labor supply is (1− dt − κit) lt. The number of household members who have recovered from the

disease is rt = 1− st − it − dt. In our quantitative analysis, we use the functional form

u (ct, lt; it, dt) = (1− dt − κit)

(
log (ct)−

l1+η
t

1 + η

)
+ κit (log (ct)− uκ)− uddt, (1)
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where uκ is the disutility from being sick and ud the disutility from death which includes lost

utility and the psychological cost on surviving members. For simplicity, we assume that sickness

does not change the marginal utility from consumption. This implies that the household will equate

consumption for all alive members (i.e. independent of health status). The variables st, it and dt

evolve according to a standard SIR model described below.

At the beginning of time t, each household decides how much to consume ct (per capita) and

how much each able-bodied member should work lt. We have normalized the disutility of labor

so that l = c = 1 before the epidemic starts. Households become infected by shopping and by

going to work. We compute infection in two steps. First, we define exposure levels for shoppers

and for workers. Then, we aggregate these into a composite infection rate at the household level.

We assume throughout the paper that asymptomatic individuals are unaware of their infection.

Formally, {dead} and {sick} are the only observable states at the individual level. In particular,

households cannot tell the difference between the st members who are susceptible and the (1− κ) it

members who are infected but not sick. This modeling choice is the main difference between our

model and the model of Eichenbaum et al. (2020) who make the polar opposite assumption. They

assume that individuals know their types, do not share risks within a family, and behave in a hand-

to-mouth fashion. We follow instead a Lucas and Stokey (1987) approach to model households’

decisions and risk sharing, so our model stays close to a standard representative agent model.

2.2 Exposure from Consumption

Consumption exposure is given by

ecctCt, (2)

where ec is a parameter which indexes the sensitivity of infection risk to consumption and Ct is

aggregate consumption.1 The idea behind this specification is that household members engage

in various activities related to consumption – such as shopping in a crowded mall, eating inside

a restaurant, going to a hospital – which exposes them to infection risk. These are assumed to

be proportional to consumption expenditure ct and for a given level of aggregate consumption,

1We use lower-case letters to denote household level variables and upper-case for aggregates.
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exposure is proportional to such activities.2

2.3 Production and Working from Home

Production uses only labor, but a key feature of our model is the distinction between hours supplied

by able bodied workers lt and effective labor supply l̂t per household. Effective labor supply is

l̂t = (1− dt − κit)
(
lt −

χt
2
m2
t

)
. (3)

The first term captures the fact that the number of valid household member is decreased by death

and sickness. The second term captures the cost of implementing mitigation strategies, denoted

mt (e.g., working from home at least some of the time). These strategies come at a cost – in the

form of lost productivity, captured by the term χt
2 m

2
t . The loss process χt is a decreasing function

of the accumulated experience working from home and is given by:

χt = χ (mt) ,

where mt is the stock of accumulated mitigation (with a depreciation rate of 1− ρm)

mt+1 = ρmmt +mt. (4)

The function χ is positive, decreasing, and convex. We assume the following functional form

χt = χ̄ (1−∆χ (1− exp (−mt))) . (5)

The cost shifter initially (i.e. when mt=0) is equal to χ̄ > 0 and then falls over time as people

figure out how to work from home. The parameter ∆χindexes the maximum potential for learning

by doing, since as mt becomes large, the cost approaches χ̄ (1−∆χ). The benefit of mitigation

strategies is a reduction in the risk of infection. Specifically, exposure from work is given by

el (1−mt) lt (1−Mt)Lt,

2Our baseline model is a simple one-sector economy. In our quantitative analysis, however, we will explore an
extension with multiple sectors which differ in their exposure risks and mitigation possibilities.
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where, as before, upper-case letters denote aggregates. The aggregate resource constraint is

Yt = Ct = L̂t = Nl̂t.

In our basic model, we ignore the issue of firm heterogeneity and market power. Therefore, price

is equal to marginal cost

Pt = Wt = 1,

where Wt is the wage per unit of effective labor, which we normalize to one.

2.4 Income and Contagion

At the end of each period, household members regroup and share income and consumption. House-

hold labor income is Wt l̂t = l̂t and the budget constraint is

(1− dt) ct +
bt+1

1 + rt
≤ bt + l̂t. (6)

Total exposure for the household is defined as

et = ē+ (1− dt) ecctCt + (1− dt − κit) el (1−mt) lt (1−Mt)Lt, (7)

where ē is baseline exposure, independent of market activities. The number of susceptible, infected,

dead and recovered members in a household follows a standard SIRD model (see Appendix):

st+1 = st − γet
It
N
st (8)

it+1 = γet
It
N
st + (1− ρ) it − δtκit (9)

dt+1 = dt + δtκit (10)

rt+1 = rt + ρit, (11)

where γ is the infection rate per unit of exposure, ρ the recovery rate, κ the probability of being

sick conditional on infection, and δt the mortality rate of sick patients. Recall that exposure et

depends on consumption, labor supply and mitigation strategies, as characterized in 7. Note that
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the number of new infected, γet
It
N st, is a function of the aggregate infection rate, It

N , taken as given

by individual households. Finally, the mortality rate δt is described by an increasing function of

the measure of sick agents:

δt = δ (κIt) ,

which captures the idea that an overloaded healthcare system can contribute to higher fatalities.

Finally, in this framework, a simple way to model a vaccine is by varying the exposure parameter

γ. If a fraction v of the susceptible population has been inoculated with a fully effective vaccine,

the effective γ in (8)-(9) is γ (1− v). This is the approach we will take in our quantitative analysis

– for now, we abstract from this and treat γ as a constant.

2.5 Market Clearing and Aggregate Dynamics

Infection dynamics for the the entire population are simply given by the SIR system above with

aggregate variable It = Nit, and so on. The aggregate labor force and total consumption are equal

to N (1− κit − dt) lt and N (1− dt) ct respectively. The market clearing conditions for goods and

bonds are given by

(1− dt) ct = l̂t

bt = 0.

3 Decentralized equilibrium

3.1 Equilibrium Conditions

Since our model reduces to a representative household model and since b = 0 in equilibrium, we

simply omit b from the value function. The household’s optimal choices are the solution to the

following recursive problem:

V (it, st, dt,mt) = max
ct,lt,mt

u (ct, lt; it, dt) + βV (it+1, dt+1, st+1,mt+1) ,

where the period utility function is defined in (1). The full set of optimality conditions for this

problem are given in the Appendix. In what follows, we let {λt, λe,t, λi,t, λs,t, λd,t} denote the
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Lagrange multipliers with respect to the budget constraint (6), the exposure equation (7), and

the three independent SIR equations (8) to (10). We denote by {Vi,t, Vs,t, Vd,t, Vm̄,t} the envelope

conditions with respect to the state variables.

The first order conditions for consumption and labor are

c−1
t = λt + λe,te

cCt

lηt = λt − λe,tel (1−mt) (1−Mt)Lt.

These two expressions show how consumption and labor fall with higher exposure risk, summarized

by λe,t, the Lagrange multiplier on the exposure equation. The first order condition with respect

to work-from-home mitigation is

λtχtmt =
βVm̄,t+1

1− dt − κit
+ λe,te

llt (1−Mt)Lt,

so that mitigation efforts rise with exposure risk.

3.2 Equilibrium with Exogenous Infections

To simplify the notation, we normalize N = 1, so we should think of our values as being per-capita

pre-infection. When there is no risk of contagion, i.e. it = 0, λe,t = 0 and Vm̄,t+1 = 0, we have

mt = 0 and from the optimal consumption and labor supply

c−1
t = lηt .

Since m = 0, we have l̂t = lt, so market clearing is simply

ct = lt.

Combining these two conditions, we get

ct = lt = 1.
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Thus, the pre-infection economy is always in steady state. Consider now an economy with exogenous

SIR dynamics: ec = el = 0. This implies mt = 0 and

c−1
t = lηt .

Market clearing requires

(1− dt) ct = (1− dt − κit) lt,

therefore

l1+η
t = 1 +

κit
1− dt − κit

.

The labor supply of valid workers increases to compensate for the reduced productivity of the sick.

Per capita consumption is

ct =

(
1− dt

1− dt − κit

)− η
1+η

.

As long as η > 0, consumption per capita decreases. Intuitively, aggregate GDP decreases because

of lost labor productivity and deaths.

The SIR system is independent from the economic equilibrium. As described in the Appendix,

the share of infected agents It increases, reaches a maximum and converges to 0 in the long run.

Assuming a constant δ, the long run solution solves

log

(
S∞

1− I0

)
= − γē

ρ+ δκ

(
1− S∞
N

)
,

and

D∞ =
δκ

δκ+ ρ
(1− S∞) .

When the congestion externality arises and δt increases, then we cannot obtain a closed-form

solution for the long run death rate but the qualitative results are unchanged. The following

proposition summarizes our results.

Proposition 1. When contagion does not depend on economic activity
(
ec = el = 0

)
, the share

of infected agents It increases, reaches a maximum and converges to 0 in the long run. The long

run death rate is given by D∞ = δκ
δκ+ρ (1− S∞) where the long run share of uninfected agents
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solves log
(
S∞

1−I0

)
= − γē

ρ+δκ

(
1−S∞
N

)
. Along the transition path, labor supply of able-bodied workers

follows the infection rate while per-capita consumption moves in the opposite direction as ct =(
1− κit

1−dt

) η
1+η

.

3.3 Private Incentives for Mitigation

In this subsection, we return to the model with endogenous exposure and characterize incentives

of households in a laissez-faire equilibrium to undertake mitigation. These incentives depend on

the shadow value of exposure λe,t = (λi,t − λs,t) γ ItN st which is increasing in new infections, γ ItN st.

In other words, for a given λi,t − λs,t, the private incentives to mitigate are proportional to the

number of new cases. Now,

λi,t − λs,t = β (Vs,t+1 − Vi,t+1) ,

with

Vs,t − Vi,t = uκκ+ κlt

(
λt −

lηt
1 + η

)
− ρλi,t +

(
1− γet

It
N

)
β (Vs,t+1 − Vi,t+1) + δtκβ (Vi,t+1 − Vd,t+1) .

Fatalism Effect We now use an approximation to obtain a sharper characterization and gain

more intuition. Specifically, we make the following assumptions (i) the non-monetary cost of death

ud is sufficiently large that it dominates the other terms in the expressions for Vd,t and Vi,t (ii)

there are no congestion effects on fatality, i.e. δt = δ. Then, the value of death and infection are

approximately constant, i.e.

Vd,t ≈ −
ud

1− β

Vi,t ≈
∞∑
s=0

βs (1− ρ− δκ)s κ

(
−uκ + δ

βud
1− β

)
=

κuκ + δκ β
1−βud

1− β (1− ρ− δκ)
≡ Vi.

The value of avoiding an infection at time t is the discounted value of the disutility from sickness

and death. The value of remaining susceptible is then

Vs,t ≈ Vi
∞∑
s=1

βs
(

1− γet+s−1
It+s−1

N

)s−1

γet+s−1
It+s−1

N
.
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Importantly, Vs,t falls with the risk of infection in the near future. Formally, we can show that

∂Vs,t

∂ It+s−1

N

= Viβ
s

(
1− γet+s−1

It+s−1

N

)s−1

γet+s−1

[
1− (s− 1)

γet+s−1
It+s−1

N

1− γet+s−1
It+s−1

N

]
.

The term inside the square bracket is positive (or equivalently,
∂Vs,t

∂
It+s−1
N

is negative) for low s. Since

Vi,t is approximately constant, this means that the difference Vs,t−Vi,t shrinks when agents become

aware of the disease, i.e. there is a perverse effect on incentives to mitigate. We term this channel

the fatalism effect : early on, agents (correctly) anticipate that they are likely to become infected

and so have weak incentives to avoid infection today. Notice, however, that this fatalism is perfectly

rational and does not represent any behavioral mistake by the agents. As we will see, the planner’s

solution considers other forces that offset this channel. When δ is constant, the fatalism effect

rationally reduces private incentives to mitigate the disease, i.e., Vs,t− Vi,t is small, but it does not

switch the sign, i.e., Vs,t − Vi,t remains positive. This can change when δ is time varying as we

discuss later.

4 Planner’s Problem

Again, we normalize N = 1 for simplicity. The planner solves

maxU =
∞∑
t=0

βtu (Ct, Lt; It, Dt) ,

where u is as defined in (1). The first order conditions for consumption and labor are (highlighted

in red are the differences with the decentralized equilibrium)

Ct : C−1
t = λt + 2λe,te

cCt

Lt : Lηt = λt − 2λe,te
l (1−Mt)

2 Lt

Mt : λtχtMt =
βVM̄,t+1

1−Dt − κIt
+ 2λe,te

l (1−Mt)L
2
t .

The marginal utilities of the planner with respect to exposure are twice as high as those of the

private sector because of the contagion externalities: private agents only care about how their
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behavior affect their own infection risk. They do not care about how their behavior affects the

infection risk of others. This is also reflected in the following envelope condition (again, changes

relative to the equilibrium are highlighted in red) with respect to the number of infected people:

VI,t = κ
L1+η
t

1 + η
− κuκ − κλt

(
Lt − χtM2

t

)
+ λe,tκe

l (1−Mt)
2 L2

t − (1− ρ)λI,t

−γetSt (λI,t − λS,t)−
(
δtκ+ δ′tκ

2It
)

(λD,t − λI,t) ,

where δ′t denotes the derivative of the fatality rate with respect to the sick population. Let us now

consider the planner’s incentives to mitigate and contrast them with the private incentives studied

in section 3.3.

4.1 Mitigation Incentives

The planner’s incentives to avoid infection today depend on VS,t+1 − VI,t+1. Under the same

simplifying assumptions as before, VD,t is approximately constant (and the same as that of private

agents):

VD ≈ −
ud

1− β
,

while the values of being infected and remaining susceptible are

VI,t ≈
∞∑
s=0

βs

(
s−1∏
τ=0

(1− ρ+ γet+τSt+τ − δκ)

)(
κuκ + δκ

β

1− β
ud

)

VS,t =
∞∑
s=1

βs (1− γet+s−1It+s−1)s−1 γet+s−1It+s−1VI,t+s.

The expression for VS,t shows that the planner also suffers from the fatalism effect: risk of future

infection, captured by the γet+s−1It+s−1term, reduces the value of remaining susceptible today.

But, there is an additional effect which arises because of the γet+τSt+τ term in the expression for

VI,t. This implies that the planner’s value of infection VI,t becomes even more negative when she

becomes aware of the disease. Intuitively, the possibility of an infected individual spreading the

disease to susceptible individuals lowers the effective recovery rate from the planner’s point of view

to ρ− γetSt is instead of ρ. Thus, for the planner, both VI,t and VS,t become more negative when

the disease arrives. The net effect, which drives her incentives to mitigate, depend on the relative
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strength of the two forces. Early on, the risk of an infected agent spreading the disease to others

is quite high (since St is high) while the fatalism effect is relatively muted (since it takes some

time for It+s to rise). Therefore, VS,t − VI,t rises upon impact, i.e. the planner finds it optimal to

increase mitigation as soon as she becomes aware of the disease’s arrival.

Finally, while we abstracted from congestion effects in this discussion for simplicity, re-introducing

them creates additional incentives for the the planner to mitigate. To see why, note that with con-

gestion effects, the planner’s value of infection is given by (the terms that change relative to the

case without congestion are highlighted in red):

VI,t =
∞∑
s=0

βs

(
s−1∏
τ=0

(1− ρ+ γet+τSt+τ − δt+τκ)

)(
κuκ + δt+sκ

β

1− β
ud + δ′t+sκ

2It+s
β

1− β
ud

)
.

Thus, the planner dislikes infection even more in the presence of congestion effects. This externality

introduces another wedge between the private and social incentives to mitigate. This tension helps

explain episodes like the Florida spring break controversy. In March 2020, as the arrival of the

pandemic became broadly known in the US, many people chose to enjoy their spring break, arguing

that if they were going to catch the virus, now would be as good a time as later, while public officials

worried about the spread of the disease and hospitals being overwhelmed.

5 Calibration

Before detailing our calibration strategy, we note that considerable uncertainty about key param-

eters remains even now. For an early discussion of the challenges, see Atkeson (2020a). We return

to this issue later in the paper. We calibrate our model at a weekly frequency.

Contagion The SIR block of the model is parameterized as follows. The recovery parameter is

set to ρ = 0.35 per week following Atkeson (2020b). This value implies that the average duration for

which an infected agent is contagious is about 20 days. The fraction of infected people who fall sick

is κ = 0.15. For the exposure function, we normalize ē + ec + el = 1 and set ec = el = 1
4 , broadly

consistent with the estimates in Ferguson (2020). These parameters imply that total exposure

e = 1 at the pre-pandemic levels of consumption and labor (the calibration of production and

utility parameters will be described later). The parameter γ is then chosen to target the basic
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reproduction number (i.e. the average number of people infected by a single infected individual)

of R = 2.0 consistent with the estimate of Salje et al. (2020), yielding an estimated value of

γ = 0.7. Finally, to parameterize the fatality rate and the congestion effects, we adopt the following

functional form for the probability of death δt :

δt = δ̄ + exp (φIt)− 1,

where the parameter φ indexes the strength of the congestion externality. We set δ̄ and φ to match

two targets for the infection mortality rate:3 a baseline value (the fraction of infected people who

die even in the absence of congestion i.e. with δt = δ̄) of 0.25%, which triples when 20% of the

population requires medical attention (i.e. the fatality rate when κI = 0.15× 0.2 = 0.03 is 0.75%).

This procedure yields δ̄ = 0.006 and φ = 0.4. We examine the robustness of our results to these

assumptions about fatality rates later in the paper.

Preferences and technology The utility parameter ud is set to a value of 2.5 which corresponds

to a large non-monetary cost associated with loss of life. We pick a value in the lower end of the

range of existing estimates to be consistent with the age profile of COVID-19 fatalities.4 The flow

disutility from sickness uκ is set to a value of 0.5. The discount factor is set to an annual value of

0.95 or equivalently, a weekly β = (0.95)
1
52 .

Next, we calibrate the working-from-home technology, which involves picking values for two

parameters – χ̄ and ∆χ. For the former, we use estimates of the effect of the restrictions imposed

by many countries in February and March 2020. A back-of-the-envelope calculation suggests that a

policy of maximal mitigation (e.g. requiring almost the entire labor force to work from home m ≈ 1)

with no prior experience (m ≈ 0) causes GDP to fall by 25% below its normal level. Since this

initial productivity loss is exactly equal to χ̄
2 , we set χ̄ = 0.5. Finally, for the long-run parameter,

3The infection fatality rate is given by δtκ
δtκ+ρ

.
4For example, Greenstone and Nigam (2020) use an estimated value of a statistical life of $11.5 million (in 2020

dollars) for the average population. Assuming a rate of return of 5%, this translates into an annual flow value of
$575,000, roughly 10 times per capita GDP, which would imply a ud of 10. However, COVID-19 deaths are not
uniform in the population so using an average VSL may not be the right strategy. According to the CDC, only 0.2
percent of COVID-19 victims were younger than 25, while the median age was above 75 and the average around 75.
We therefore make an adjustment based on relative life expectancy, which is 12 years at age 75 and 42 at the median
age of 38. This suggests a factor of 0.25 between the average victim and the average agent in our model, which leads
to a value of ud around 2.5.
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∆χ, we rely on Dingel and Neiman (2020), who estimate that roughly one-third of the jobs in

the US can be done from home. Guided by this estimate, we set ∆χ = 0.34. We also assume

that accumulated learning depreciates very slowly, i.e. ρm = 0.99, which implies that the stock of

knowledge evolves according to m̄t+1 = 0.99m̄t +mt.

Finally, we assume that a vaccine arrives a year after the onset of the disease but is only slowly

rolled out so it takes 6 months for the entire population to be inoculated. This would likely have

been at the optimistic end of the forecasts made by experts in the Spring of 2020 but nevertheless

seems like a natural starting point for our analysis.5

6 Quantitative Results

Our benchmark exercise assumes an initial infection rate of I0 = 1% for expositional purposes (it

makes the figures easier to read in the early periods), but it is important to keep in mind that

this is a relatively large shock or equivalently, a situation where agents and policy-makers become

aware of the pandemic quite late. As part of our robustness analysis, we will also report simulations

with different initial infection shocks to capture the possibility of an earlier detection (which is the

relevant case for many countries/regions).

Private Response We start with the decentralized solution. Figure 1 shows the behavior of the

contagion and macro variables in the decentralized equilibrium under three different assumptions

about exposure and mitigation strategies. The solid blue line shows a situation where infection

rates are exogenous, i.e. do not vary with the level of economic activity. Since infection is assumed

to be exogenous, agents do not engage in mitigation, i.e., they ignore the pandemic. In fact, labor

input rises (the dashed line, top left panel in Figure 1), while per-capita consumption falls by

about 2% (the solid line), as able-bodied workers work harder to compensate for the workers who

are sick. This is clearly not a realistic assumption, but it serves as a useful benchmark for the worst

case scenario. In this scenario, almost the entire population is eventually infected (about 82%)

and 0.44% of the population succumbs to the virus (bottom, middle panel in Figure 1). The case

5We assume that during the rollout, the vaccinated are treated the same as everyone else. Needless to say, there
are gains to be had by conditioning policies on vaccination status, e.g. by introducing so-called vaccine passports.
But, as of the writing of this draft, no country has introduced any concrete steps in this direction, providing some
support for our assumption. Moreover, quantitatively, this is unlikely to have a big effect – in part because across all
our simulations, the vaccine arrives relatively late.
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Figure 1: Decentralized Equilibrium

mortality rate peaks at 0.7% roughly 15 weeks after the initial infection when about 2.6% (κ× I of

the peak infection rate of 17%) of the population is sick and the healthcare system is overwhelmed.

The red line describes the case where exposure is endogenous (i.e. varies with consumption and

labor) but there is no work-from-home (WFH) technology, i.e, the only way for the household to

reduce exposure is to cut back on consumption and labor supply. As we would expect, this leads

to a sharp reduction in economic activity (top, left panel in Figure 1) – almost 11% at the trough.

Importantly, the reduction is gradual, tracking the overall infection rate (consumption and labor

hit their lows at 17 weeks). Intuitively, when the fraction of infected people is low (as is the case

in the early stages), a reduction in exposure has a small effect on future infection risk, relative to

the resulting fall in consumption. And since each household does not internalize the effect it has

on the future infection rate, it has little incentive to indulge in costly mitigation early on. This

dynamic is reflected in the hump-shaped pattern in λe (the middle panel in Figure 1). As we will

18



see, the planner’s incentives change much more strongly at the beginning. The mitigation behavior

does lower the cumulative infection and death rates (relative to the exogenous infection case) by

about 5% and 0.6% respectively.

Finally, the yellow line shows the effect of access to the WFH technology. This allows the

household to reduce exposure without sacrificing consumption – now, the peak loss in consumption

is 8.7%, even as the exposure falls by more (0.82 compared to 0.9, top middle panel in Figure 1).

Mitigation (e.g. fraction of time spent working from home) in the top, right panel in Figure 1 is

hump-shaped, peaking at almost 30% at the same time as the fraction infected. This additional

flexibility also lowers cumulative fatalities to 0.3%. However, the timing of mitigation strategies is

mostly unchanged – households in the decentralized economy do not find it optimal to front-load

their mitigation efforts.

Optimal Response We now turn to the planner’s solution, depicted in Figure 2. As before,

the blue, red and yellow lines show the cases of exogenous infection, mitigation without WFH and

mitigation with WFH, respectively. As the yellow and red curves in Figure 2 show, the planner finds

it optimal to “flatten the curve” more dramatically than agents in equilibrium. The peak infection

rates are well below the decentralized equilibrium levels (7% versus 12%), leading to a lower peak

fatality rate (0.4% versus .55%) as well as cumulative deaths (0.23%, compared to just over 0.3%

in the decentralized equilibrium with WFH). To achieve this, the planner has to cut exposure by

almost 30%. Of course, this pushes the economy into a deeper recession with consumption falling

by 27% even with WFH (top left panel in Figure 2). The planner’s response also displays a hump-

shaped pattern, rising with the infection rate, but she does step on the brakes sooner (immediately

upon learning of the disease) compared to private agents.

The availability of the WFH technology ameliorates the economic impact of the planner’s sup-

pression strategy, but does not significantly alter the contagion dynamics. Intuitively, fatalities are

so costly that the planner aggressively suppresses the infection even in the absence of the WFH

option: access to WFH simply allows the planner to achieve the same exposure outcomes at a lower

cost. Notice also that the planner’s incentives to use the WFH technology are much stronger than

that of private agents in a decentralized equilibrium: partly because her shadow value of exposure

is higher but also because she attaches a greater value to the future benefits of accumulated knowl-
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Figure 2: Planner Solution: Contagion Dynamics

edge. As a result, m rises to as high as 0.5 relatively quickly (compared to 0.3 in the decentralized

equilibrium).

How do these patterns look relative to observed outcomes? Take the experience of the state

of New York. Between March and September 2020, NY’s GDP fell by about 10.5% (relative to

a pre-Covid trend) and cumulative excessive deaths were about 0.21% of its population. In the

planner’s solution above, the average decline in GDP is about 12% (relative to pre-pandemic) over

the first 26 weeks from the time disease was detected with a death toll of 0.17% of the population.

Private versus Public Incentives Figure 3 illustrates the fatalism effect. The top graphs

assume a constant risk of death δ. On the left we see the shrinking private incentives for safety

early on as Vs,t − Vi,t decreases. On the right, we see that Vs,t − Vi,t increases for the planner.

The lower graphs illustrate another incentive problem that arises when δ is time-varying. If agents

anticipate congestion in the future and if they think they are likely to become infected, they might

prefer to increase their risk of infection today because it is better to be sick when δ is still relatively

low. Not only does Vs,t − Vi,t shrink, its sign can even flip, as we see in the bottom left panel. For

20



Figure 3: Fatalism and Perverse Incentives

the planner, by contrast, the risk of a higher δ increases the incentives to mitigate. We conclude

that the misalignment of private incentives is larger during early stages of the epidemic and is

amplified by congestion externalities.

Early versus Late Detection Next, we analyze the effect of the planner becoming aware of the

disease earlier. Recall that, in the baseline, the planner became aware of the disease when I0 = 1%.

Now, we suppose instead the planner becomes aware of the disease much earlier, specifically at

I0 = 0.01%. Figure 4 shows her optimal response in this case. The changes relative to the I0 = 1%

case are relatively small – the extent of mitigation, work-from-home and the final death count are

all quite similar across these cases (of course, as we would expect, the peaks occur slightly later

with a smaller initial infection). These results suggest a modest value to detecting the disease at

an earlier stage.

This exercise also offers an useful way to think about differences in observed outcomes across

regions. For example, consider two regions which differ in the infection rate at the time of detection

of the epidemic. One region (say, the state of New York) started its response only after the disease
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had already infected 1% of the population while another region (say, California) was able to start

mitigation at a small initial infection rate of 0.01%. The model predicts significant difference in

health outcomes after 10 months – the fraction of the population dead after 40 weeks in the model is

0.22% in the late detection region and 0.13% in the early detection region. These line up reasonably

well with the data – cumulative excess deaths in New York between March 2020 and January 2021

was about 0.26% while the corresponding number for California was 0.14%.

This also shows how a large country like the United States with many regions can experience

second waves, due to a compositional effect – just as the disease wanes in one region, it picks up

steam in another.

Fatality Rates As we discussed earlier, there is still little agreement in the literature on the

mortality of Covid-19, with Atkeson (2020a) suggesting that the range of plausible values could

be as wide as 0.1% to 1%. To explore the effect of this uncertainty, we repeat our analysis of the

planner’s problem with a mortality rate of 1% or four times our baseline value and at the top of the

range suggested by Atkeson (2020a). The results are presented in Figure 5. As expected, the overall

number of fatalities are much higher, as is the economic cost. The fraction of the population dying

from the disease rises to about 0.6% over the course of the pandemic. The profile of the planner’s

solution shifts towards substantially more mitigation throughout: she still finds it optimal to begin

mitigation almost immediately and at a higher level and maintains tight mitigation throughout. As

a result, the drop in consumption reaches about 15% immediately and bottoms out around 30% six

months after the initial infection shock. The infection curve is substantially flattened, with peak

infections cut almost in half.

Congestion Externality Next, to isolate the role of the congestion externality, we repeat our

analysis of the planner’s solution with the parameter φ set to 0. The results, shown in Figure

6, display similar patterns as Figure 2 but with a much less severe contraction. Intuitively, a

healthcare system with sufficient slack capacity allows the planner to achieve similar outcomes in

terms of fatalities with modestly higher infection rates or equivalently, with less mitigation (top,

right panel in Figure 6). Accordingly, the recession is not as deep or persistent than in the baseline.
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Figure 4: Planner Solution: Two States with 1% and 0.01% Initial Infection Shocks

Figure 5: Planner Solution: Aggregates with Increased δt
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Figure 6: Planner Solution: Aggregates with φ = 0

Altruistic Households Finally, we consider the possibility that households partly internalize

their effects on the aggregate outcome. Formally, we assume that households incorporate exter-

nalities with a weight τ while making their consumption, labor and mitigation decisions. The

laissez-faire equilibrium and the planner’s optimum are obtained as special cases by setting τ = 0

and τ = 1 respectively. If τ = 0.33, cumulative deaths are reduced to 0.3% (a little lower than the

0.33% under τ = 0). If τ is assumed to be 0.5, i.e. households place equal weight on private and

social incentives, the cumulative death rate falls slightly to 0.29% (roughly half of the gap between

the laissez-faire equilibrium and the planner’s optimum). These results suggest that for private

decisions to be close to that of the planner requires a very large degree of altruism.

Parameter Uncertainty As we briefly alluded to earlier, there was (and in some respects,

continues to be) much uncertainty about the structural parameters of the disease. Here, we use our

model to speak to the dilemma faced by policy-makers who have to make decisions with imperfect

knowledge of key primitives. Atkeson (2020a) points out that, when one does not know the initial

number of active cases, it is difficult “to distinguish whether the disease is deadly (1% fatality rate)
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or milder (0.1% fatality rate).” We illustrate this in Figure 7 where we show how very different

combinations of primitives can have similar implications for the number of deaths, the variable

that is arguably the best measured. The graph shows the evolution of the disease in the absence

of any mitigation for two cases. The first case has a baseline reproduction number R = 3 and

an infection fatality rate of 0.5%, while the other has a lower reproduction number R = 2 but a

higher infection fatality rate of 1%. With an initial shock of i0 = 1%, over the first two months

of the spread, the paths of the number of dead are almost identical, as shown in the first panel of

the figure. Without accurate measures of other epidemiological variables, such as the number of

newly infected or the fraction of cases recovered, it would be nearly impossible to distinguish the

two diseases in the short-term. Over the longer-term, however, the two diseases have very different

implications for the number of dead, as shown in the second panel.

To explore the role of this uncertainty, we look at the optimal policy of a planner under the two

cases (starting from an initial value of i0 = 0.1%). The planner’s choices for labor, consumption

and exposure are shown in Figure 8. Interestingly, during the first few weeks, the planner’s choices

are quite similar under both cases – she cuts exposure by almost 10% immediately. The differences

between the two cases become noticeable only after 8-10 weeks – the planner continues to ramp

up mitigation aggressively for the more contagious (albeit less fatal) case while the less contagious

version induces a more measured but persistent increase. This pattern suggests the following

strategy for a planner faced with large uncertainty about the fatality rate: aggressively mitigate

the spread of the disease for the first few weeks while waiting for more data. Assuming there is a

substantial reduction in uncertainty within the first 10 weeks after the outbreak, this strategy will

allow the planner to implement the optimal response, despite the initial uncertainty about a key

parameter.

Time-varying Mortality and Exposure Our baseline model held key parameters fixed through-

out the pandemic. This allowed us to highlight the dynamic incentives – both private and social

– for mitigation. Here, we explore the implications of time variation, specifically in fatality and

exposure rates.

In our first experiment, we study the effect of a declining fatality rate, capturing, e.g. im-

provement in treatment of the disease (either because of the arrival of new drugs/cures or due
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Figure 7: Percentage of Population Dead for Two Diseases and Time Horizons

Figure 8: Percentage of Population Dead for Two Diseases and Time Horizons
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to learning-by-doing). Specifically, we contrast the planner’s optimal solution when the fatality

rate falls by half over the course of first 6 months to her strategy under a constant (high) fatality

rate. The former is modeled using an adjusted fatality rate of δ̂t =
(
1− t

26
1
2

)
δt for t ≤ 26 and

δ̂t = δt
2 otherwise. The results are plotted in the orange lines in Figure 9. The blue lines show

the optimal response when the fatality rate is the unadjusted δt. The comparison between the two

lines shows an interesting pattern — a planner who anticipates a declining mortality rate mitigates

more (less) aggressively early (later) on in the disease’s spread. Intuitively, she finds it optimal to

delay infections, moving them from the high to the low mortality phase.

In the second experiment, we let the baseline exposure ē vary over time. Recall that this

parameter is meant to capture risk of infection unrelated to economic activity, e.g. through social

events or other interactions. This is related, among other things, to weather and other seasonal

factors (such as holidays). To capture this type of time variation, we solve for the socially optimal

path under the assumption that ē doubles from its baseline value at week 24, before slowly returning

to its original value over the following 6 months. Figure 10 shows the key variables in this case (the

orange lines) compared to the baseline in blue. This creates a mini second wave of infections, but

quantitatively, the effects are somewhat modest with about 0.03% additional deaths in the long

run. Interestingly, anticipation of ē rising in the future causes the planner to slightly scale back

her initial mitigation during the early stages.

Pandemic Fatigue Finally, we consider the effects of pandemic fatigue. Formally, we add a

direct utility cost associated with mitigation

u (Ct, Lt; It, Dt) = (1−Dt) log (Ct)− (1−Dt − κIt)
L1+η
t

1 + η
− ω1

2
Fω2
t M2

t − uκκIt − udDt

Ft+1 = ρfFt +Mt

where Ft denotes fatigue or accumulated past mitigation (with a ‘depreciation’ rate of 1 − ρf )

and ω1, ω2 are parameters. Note that the disutility of mitigation is increasing in fatigue, which

introduces another dynamic consideration – avoiding infection today makes it costlier to undertake

mitigation in future periods. The planner’s solution in the presence of fatigue is shown in Figure
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Figure 9: Planner Solution: Time-Varying Fatality

Figure 10: Planner Solution: Time-Varying Exogenous Exposure
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Figure 11: Planner Solution: Social Distancing Fatigue v No Fatigue

11, along with the baseline, no-fatigue version.6 As one would expect, the presence of fatigue lowers

overall mitigation, though the effects on overall health and economic outcomes are quite modest

(cumulative deaths in the planner’s solution rise only by about 0.05% relative to the baseline).

These results suggest that our baseline findings are robust to the presence of this type of fatigue.

7 Sectoral Heterogeneity

We extend our baseline to allow for multiple sectors that differ in their epidemiological parameters

and ability to work from home. This will allow us to compare the model’s predictions to detailed

micro data on sector-level health and economic outcomes. We will focus on the planner’s solution.

6We use the following values for the fatigue parameters: ω1 = 0.5, ω2 = 0.5, ρf = 0.99.

29



Formally, consumption is a composite of J different goods,

Ct =

 J∑
j=1

ξjC
θ−1
θ

jt

 θ
θ−1

where each good is produced according to

Yjt = L̂jt = (1−Dt − κIt)
(
Ljt −

χjt
2
M2
jt

)

with sector-specific mitigation cost and learning-by-doing processes given by

χjt = χ̄j
(
1−∆χj

(
1− exp

(
−M jt

)))
M jt+1 = ρMM jt +Mjt

Total exposure is the sum of consumption and production exposures across the three sectors

et = ē+ (1−Dt)
∑
j

ecjC
2
jt + (1−Dt − κIt)

∑
j

elj (1−Mjt)
2 L2

jt

Thus, the sectors differ in the exposure risk – captured by the parameters
(
ecj , e

l
j

)
– and in the

productivity losses associated with mitigation, i.e. in (χ̄j ,∆χj).

We calibrate a version with 3 sectors of High, Medium and Low infection risks. The calibration

strategy, along with values for the exposure and mitigation parameters, is in Appendix C. The

results – specifically, economic and health outcomes 26 weeks after the onset of the pandemic –

are summarized in the red bars in Figure 12. The red bars in first panel shows the relative share

of infections, defined as Sharej,26 =
∑26
t=1 e

l
jγStIt(1−Dt−κIt)(1−Mjt)

2L2
jt∑

j

∑26
t=1 e

l
jγStIt(1−Dt−κIt)(1−Mjt)

2L2
jt

. The remaining two panels

show the average drop in sectoral output over the same period.

The empirical analogues (the blue bars in the figure) are constructed using detailed data from

the state of Washington. We first group industries into our High, Medium and Low sectors using

the estimated share of jobs that can be done from home in Dingel and Neiman (2020). We then

compute the cumulative infection shares and GDP changes for each group. 7They show that the

7The indutry-wise infection shares are taken from a report titled "COVID-19 Confirmed
Cases by Industry Sector" published in November 2020 by the Washington State Depart-
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Figure 12: Planner Solution: Multi-Sector Model Versus Data

optimal responses in the model correspond quite closely with the observed outcomes. For example,

in the data, the High risk sectors accounted for almost 65% of total infections and suffered a GDP

loss of about 8%, compared to 64% and 10% respectively in the model. At the other extreme, the

optimal decline in the output of the low risk sectors is about 1%. In the data, those sectors actually

experienced a small increase relative to pre-pandemic levels. This increase was driven entirely by

a large boom in the information technology sector: as the third panel shows, the Low risk sector

excluding tech experienced a modest decline in GDP during Q2-Q3 of 2020.

8 Conclusions

We propose an extension of the neoclassical model to include contagion dynamics to study and

quantify the trade-offs of policies that can mitigate the Covid-19 pandemic. Our model reveals two

key insights. Firstly, relative to the incentives of private agents, a planner’s incentives to mitigate

the spread of the disease are more front-loaded. Secondly, in our calibrated model, the possibility

of mitigating the spread of the disease by working from home leads to quantitatively meaningful

reductions in the spread of a disease and the economic costs involved.

Our modeling framework was kept simple to more clearly demonstrate the economic forces

involved. Nonetheless, it does a good job at predicting the overall economic and epidemiological

ment of Health and Washington State Department of Labor and Industries. It is available at
https://www.doh.wa.gov/Portals/1/Documents/1600/coronavirus/IndustrySectorReport.pdf. The GDP changes
are the percentage changes in real GDP during Q2 and Q3 2020 (relative to Q4 2019) and are computed using the
National Income and Product Accounts published by the Bureau of Economic Analysis.
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outcomes observed in the US. An extended version of the model with heterogeneous sectors, which

differ in their exposure risk as well as the ability to work from home, also does fairly well at

matching the patterns of cross-sectional output and infection incidence.

There are many dimensions along which the model could be enriched to provide sharper quan-

titative estimates as well as answers to other policy-relevant questions. One interesting direction is

to explore asset pricing implications, in particular ask whether the mitigation and learning mech-

anisms emphasized here can help explain some of the dramatic swings in stock markets during the

early stages of the pandemic (see for example, Gormsen and Koijen, 2020, for a careful description

of the asset market evidence during this period). This would not only require adding elements

necessary for reasonable asset pricing patterns (such as recursive preferences), but also explicitly

incorporate uncertainty and/or learning about epidemiological and mitigation parameters.

Our focus on a simple representative household formulation also abstracts from imperfections

in risk-sharing. Understanding how mitigation strategies and dynamics interact with these imper-

fections in a calibrated version with realistic heterogeneity is another important and interesting

avenue for future work. Finally, we have also abstracted from testing and the possibility of more

targeted mitigation strategies, yet another dimension where more work needs to be done.
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Appendix

A Decentralized Equilibrium

The Lagrangian of the household is:

Vt = u (ct, lt; it, dt) + βVt+1 + λt

(
l̂t + bt − (1− dt) ct −

bt+1

1 + rt

)
+ λe,t

(
et − ē− (1− dt) ecctCt − (1− dt − κit) el (1−mt) lt (1−Mt)Lt

)
+ λi,t

(
it+1 − γet

It
N
st − (1− ρ) it + δtκit

)
+ λs,t

(
st+1 − st + γet

It
N
st

)
+ λd,t (dt+1 − dt − δtκit)

The first order conditions for consumption and labor are then

ct : c−1
t = λt + λe,te

cCt

lt : lηt = λt − λe,tel (1−mt) (1−Mt)Lt

mt : λtχtmt =
βVm̄,t+1

1− dt − κit
+ λe,te

llt (1−Mt)Lt

The remaining first order conditions are

et : λe,t = (λi,t − λs,t) γ
It
N
st

it+1 : λi,t = −βVi,t+1

st+1 : λs,t = −βVs,t+1

dt+1 : λd,t = −βVd,t+1
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The envelope conditions are

Vi,t = κ
l1+η
t

1 + η
− κuκ − κλt

(
lt −

χtm
2
t

2

)
+ λe,tκe

l (1−mt) lt (1−Mt)Lt − (1− ρ)λi,t + δtκ (λi,t − λd,t)

Vs,t = (λs,t − λi,t) γet
It
N
− λs,t

Vd,t =
l1+η
t

1 + η
− log (ct)− ud − λt

(
lt − χtm2

t − ct
)

+ λe,t

(
ecctCt + el (1−mt) lt (1−Mt)Lt

)
− λd,t

Vm,t = βVm,t+1 + λt (1− dt − κit)
χ̄

2
m2
t∆χ exp (−mt)

These first-order and envelope conditions, the equations governing SIR dynamics, exposure, and

mortality rate, and the market clearing conditions, characterize the equilibrium.

B Planner’s Problem

We normalize N = 1 for simplicity. The planner solves

maxU =
∞∑
t=0

βtu (Ct, Lt; It, Dt)

subject to

u (Ct, Lt; It, Dt) = (1−Dt) log (Ct)− (1−Dt − κIt)
L1+η
t

1 + η
− uκκIt − udDt

and

(1−Dt)Ct = (1−Dt − κIt)

(
Lt −

χ
(
M̄t

)
2

(Mt)
2

)

and the SIR equations

St+1 = St − γetItSt

It+1 = γetItSt + (1− ρ) It − δ (κIt)κIt

Dt+1 = Dt + δ (κIt)κit

Rt+1 = Rt + ρIt
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The Lagrangian is

Vt
(
It, St, Dt, M̄t

)
=u (Ct, Lt; It, Dt) + βVt+1 + λt

(
(1−Dt − κIt)

(
Lt − χ

(
M̄t

)
(Mt)

2
)
− (1−Dt)Ct

)
+ λe,t

(
et − ē− (1−Dt) e

cC2
t − (1−Dt − κIt) el (1−Mt)

2 L2
t

)
+ λi,t (It+1 − γetItSt − (1− ρ) It + δ (κIt)κIt)

+ λs,t (St+1 − St + γetItSt)

+ λd,t (Dt+1 −Dt − δ (κIt)κIt)

The first order conditions for consumption and labor are then (highlighted in red the difference

with the decentralized equilibrium)

Ct : C−1
t = λt + 2λe,te

cCt

Lt : Lηt = λt − 2λe,te
l (1−Mt)

2 Lt

Mt : λtχtMt =
βVM̄,t+1

1−Dt − κIt
+ 2λe,te

l (1−Mt)L
2
t

The remaining first order conditions are the same as those of the private sector

et : λe,t = (λi,t − λs,t) γItst

It+1 : λi,t = −βVI,t+1

St+1 : λs,t = −βVS,t+1

Dt+1 : λd,t = −βVD,t+1
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The envelope conditions are

VI,t = κ
L1+η
t

1 + η
− κuκ − κλt

(
Lt −

χt
2
M2
t

)
+ λe,tκe

l (1−Mt)
2 L2

t − (1− ρ)λi,t

−γetStλi,t −
(
δtκ+ δ′tκ

2It
)

(λd,t − λi,t)

VS,t = −λs,t − γetIt (λi,t − λs,t)

VD,t =
L1+η
t

1 + η
− log (Ct)− ud − λt

(
Lt −

χt
2

(Mt)
2 − Ct

)
+ λe,t

(
ecC2

t + el (1−Mt)
2 L2

t

)
− λD,t

VM̄,t = βVM̄,t+1 + λt (1−Dt − κIt)
χ̄

2
∆χe

M̄t (Mt)
2

C Multisector Model: Calibration

We first order the (NAICS 2-digit) industries by the share of jobs that can be done from home,

as estimated by Dingel and Neiman (2020) and reported under the column marked WFH Index in

Table 2 below.8 We then group them into 3 sectors – a High infection-risk sector (accounting for a

cumulative 50% of pre-Covid employment), a Medium infection-risk sector (accounting for the next

25% of pre-Covid employment), and a Low infection-risk sector (accounting for the remaining 25%

of pre-Covid employment). We will denote these sectors with subscripts j = 1, 2, 3 respectively.

There are four parameters that differ across sectors: elj the exposure through labor, ecj the

exposure through consumption, and χ̄j and ∆χj which govern productivity losses associated with

working-from-home mitigation. We set the sector-specific parameters of the medium infection-

risk sector to their values in our baseline, one-sector model. We then scale the parameters of the

High and Low infection-risk sectors by the relative WFH indices. These average WFH indices

for the High, Medium and Low infection-risk sectors are 0.76, 0.45 and 0.19 respectively, so the

corresponding factors are 1.69, 1 and 0.42. The calibrated parameters are given in Table 1.

8Specifically, we use the wage-weighted measures reported in Table 3 of their paper. The employment shares re-
ported in Table 2 are taken from a report titled "COVID-19 Confirmed Cases by Industry Sector" published in Novem-
ber 2020 by the Washington State Department of Health and Washington State Department of Labor and Industries.
It is available at https://www.doh.wa.gov/Portals/1/Documents/1600/coronavirus/IndustrySectorReport.pdf.

38

https://www.doh.wa.gov/Portals/1/Documents/1600/coronavirus/IndustrySectorReport.pdf


Table 1: Calibrated Parameters, Multisector Model

High Medium Low

elj Labor Exposure 0.42 0.25 0.11

ecj Consumption Exposure 0.42 0.25 0.11

χ̄j Mitigation Cost 0.84 0.5 0.21
∆χj Max Mitigation 0.57 0.34 0.14

Table 2: Industries Used in Multisector Analysis

WFH Index Emp. Share Group

72 Accommodation and Food Services 0.07 0.09 High
11 Agriculture, Forestry, Fishing and Hunting 0.13 0.03 High
44-45 Retail Trade 0.22 0.12 High
23 Construction 0.22 0.06 High
62 Health Care and Social Assistance 0.24 0.13 High
48-49 Transportation and Warehousing 0.25 0.04 High
31-33 Manufacturing 0.36 0.09 Medium
71 Arts, Entertainment, and Recreation 0.36 0.02 Medium
21 Mining, Quarrying, and Oil and Gas Extraction 0.37 0.005 Medium
22 Utilities 0.41 0.01 Medium
81 Other Services (except Public Administration) 0.43 0.03 Medium
56 Admin / Support, Waste Mgmt, Remediation 0.43 0.05 Medium
99 Federal, State, and Local Government 0.47 0.04 Medium
53 Real Estate and Rental and Leasing 0.54 0.02 Low
42 Wholesale Trade 0.67 0.04 Low
61 Educational Services 0.71 0.09 Low
51 Information 0.80 0.04 Low
52 Finance and Insurance 0.85 0.03 Low
55 Management of Companies and Enterprises 0.86 0.02 Low
54 Professional, Scientific, and Technical Services 0.86 0.06 Low

The Emp Share column reports the percentage of employment in Washington state and is taken

from the report titled "COVID-19 Confirmed Cases by Industry Sector" (publication number 421-

002, dated November 10, 2020) published by the Washington State Department of Health and

Department of Labor and Industries. It is available here.
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D Properties of Contagion Dynamics

D.1 Definitions

We start with the most basic concept in epidemiology, the basic reproduction number, which we

denote by R because the usual notation “R not” is terribly confusing. R is the expected number

of cases directly generated by one case when everyone else is susceptible. The most basic model is

to assume that when someone is infected there are three stages

1. a latency period T1 when the individual is not yet infectious

2. infectious period T2 − T1

3. recovered period after T2 when the individual is not infectious anymore

If the contact rate (exposure) is e and the probability of infection conditional on contact is γ, the

expected number of secondary cases per primary case in a fully susceptible population is therefore

R = γe (T2 − T1)

In our notations, e is the number of people that one individual meets per unit of time and γ is the

probability of transmitting the disease conditional on a meeting between one infectious and one

susceptible agent.

D.2 SIR Model

The SIR model builds on this idea. We define the length of one period so that T1 = 1. If someone

is infected in period t, then she will start spreading the disease in period t+1. Let It be the number

of infected individuals and St the number of susceptible individuals at the beginning of time t in a

population of size N . Each infected agent meets e people. We assume that the meetings are random

and that the population is always evenly mixed, therefore the probability of meeting a susceptible

person is S/N . The number of meetings between infected and susceptible agents is therefore eIS/N

and the total number of new infections is γeIt
St
N . In our macro model e is an endogenous variable

but we take it as a constant for now. We assume that recovery follows a Poisson process with
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intensity ρ. The infection equation is then

It+1 = γeIt
St
N

+ (1− ρ) It (12)

Consider a population of size N (large) of initially susceptible individuals (S0 = N). If one indi-

vidual is infected, the total number of secondary infections from that individual is

R =
∞∑
τ=0

γe (1− ρ)τ =
γe

ρ
(13)

Note that R is a number, not a rate per unit of time. The model has a steady state at I = 0 and

S = 1 but it is unstable in the sense that if one individual gets infected the system converges to a

different steady state. In general we can write

It+1

It
= 1 + γe

St
N
− ρ

When S/N ≈ 1, the number infected people evolves exponentially as It+1

It
≈ 1 + γe− ρ. If R0 < 1

then a small infection disappears exponentially. If R0 > 1 then there is an epidemic where I initially

grows over time. The growth continues as long as γeStN > ρ. Eventually the number of susceptible

people decreases and growth slows down or reverses, depending on how we close the model.

There are two ways to close the model. The simpler one, called the SIS model, assumes that

recovered agents ρI go back to the pool of susceptible agents. This is the model used to study the

common cold. In that case N = St + It and the equation becomes

It+1 = γeIt
N − It
N

+ (1− ρ) It

and the steady state infection rate is I
N = max

(
0; 1− ρ

γe

)
.

The other way is to introduce a population of recovered agents R who are not susceptible

anymore. This model – called SIR – is used for flu epidemics, among others. In the simple model,
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R is an absorbing state. The system becomes

St+1 − St = −γeIt
St
N

(14)

Rt+1 −Rt = ρIt (15)

and of course N = St + It + Rt. Note that S is (weakly) decreasing and R is (weakly) increasing,

therefore their limits exist. Since N = St + It + Rt so does the limit of I. For R and S to be

constant it must be that I tends to zero. Therefore

lim
t→∞

It = 0

That is the first simple property of the solution. Second, since S is decreasing, I must be (at most)

single-peaked. If I0 is small and Ro > 1 then It must grow, reach a maximum, and then decrease

towards zero. This is the typical shape of the curves found in the literature. Harko et al. (2014)

provide an analytical solution to the differential equations (in continuous time).

Let us now study the long run behavior of S and R. Combining equations (14) and (15) we get

Rt+1 −Rt = −N ρ

γe

St+1 − St
St

This equation is simpler to write in continuous time

Ṡ

S
= −γe

ρ

Ṙ

N

and to integrate the solution:

log

(
St
S0

)
= −γe

ρ

(
Rt −R0

N

)
This equation holds along any transition path without exogenous shocks. In the limit, since S∞ +

R∞ = 1 we have the transcendental equation

log

(
S∞
S0

)
= −γe

ρ

(
1− S∞ −R0

N

)

The long run steady state (S∞, R∞) depends on the initial conditions as well at the basic repro-
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duction number R. We can summarize our discussion in the following Lemma.

Lemma. The SIR model is fully characterized by R = γe
ρ and the initial conditions (S0, R0). If

R < 1, infections die out without epidemic. If R > 1, a small infection I0 creates an epidemic: It

rises, reaches a maximum in finite time before declining towards zero: I∞ = 0. The long run limits

S∞ and R∞ exist and satisfy S∞ +R∞ = 1 and log
(
S∞
S0

)
= −R

(
1−S∞−R0

N

)
.

The complete model takes into account that some individuals will die from the disease. We

assume that a fraction κ of infected agents become (severely) sick and a fraction δ of the sick

patients die. Hence we have another absorbing state, D. The system of equation of the SIRD

model becomes

It+1 = γIt
St
N

+ (1− ρ− δκ) It

St+1 = St − γIt
St
N

Rt+1 = Rt + ρIt

Dt+1 = Dt + δκIt

The number of sick people is κIt and determines the pressure on the health care system. From the

perspective of the epidemic we could aggregate D and R into one absorbing state: R̃ = D+R such

that R̃t+1 = R̃t + (ρ+ δκ) It. The long run solution is

log

(
S∞
S0

)
= − γe

ρ+ δκ

(
1− S∞ − R̃0

N

)

and R̃∞ = 1 − S∞ while D∞ = D0 + δκ
δκ+ρ

(
R̃∞ − R̃0

)
. From an economic and social perspective

we need to keep track of D and R separately in any case.

D.3 SIR model with exogenous birth and death

The path dependence of the long run steady state is a somewhat artificial consequence of the lack

of entry and exit. Suppose that εN people are both in state S each period, and also that there is
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a constant exogenous death rate ε. The system is

It+1 = γeIt
St
N

+ (1− ρ− ε) It

St+1 = (1− ε)St − γeIt
St
N

+ εN

Rt+1 = (1− ε)Rt + ρIt

Note that population is constant: St+1 + It+1 +Rt+1 = N . Now the steady state requires

γe
S

N
I = I (ε+ ρ)

γeI
S

N
= ε (N − S)

ρI = εR

Since I > 0 we can easily solve for the unique steady state

S

N
=
ε+ ρ

γe

I

N
= ε

1− ε+ρ
γe

ε+ ρ

R

N
= ρ

1− ε+ρ
γe

ε+ ρ

And now we can take the limit as ε→ 0 to get I
N = 0, S

N = ρ
γe = R−1 and R

N = 1− ρ
γe = 1−R−1.

Adding a small amount of exogenous birth and death would render the long run steady state

independent of initial conditions.
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