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Abstract

By the end of 2019, US output was 14% below the level predicted by its pre-

2008 trend. To understand why, I develop and estimate a model of the US with

demographics, real and monetary shocks, and the occasionally binding zero lower bound

on nominal rates. Demographic shocks generate slow-moving trends in interest rates,

employment, and productivity. Demographics alone can explain about 40% of the gap

between log output per capita and its linear trend by 2019. By lowering interest rates,

demographic changes caused the zero lower bound to bind after the Great Recession,

contributing to the slow recovery.
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1 Introduction

Three significant trends over recent decades characterize the US macroeconomic landscape.

First, average real growth during expansions has slowed markedly, falling from 3.2% between

1991 and 2001, to 2.8% between 2002 and 2007, and to 1.9% between 2009 to 2019. As a

result, by 2019Q4 output was 14% lower than what is predicted by its long-run pre-Great

Recession trend. Second, real and nominal interest rates have fallen, with the Fed Funds

rate at its lower bound between 2009 and 2015. Third, the employment-population ratio has

fallen significantly from its peak in the 2000s (Figure 1).

Against this macroeconomic background, the US population has aged. The average age

of the population has risen from 28 to 38 in the period from 1970 to 2018. A number of

papers have shown that an aging population can explain the trends in growth and interest

rates observed. Eggertsson et al. (2019) and Summers (2014) show that an older population

can explain why real interest rates are low and therefore why the zero lower bound (ZLB)

binds – because savings behavior changes with age, an economy with a higher fraction of

older people has more savings and lower interest rates (see also Carvalho et al., 2016; Gagnon

et al., 2021). Feyrer (2007) and Aaronson et al. (2014) show that an aging population can

rationalize why productivity growth and the employment-population ratio are low, since

younger workers face a steeper human capital profile and older cohorts work fewer hours.

In this paper, I embed demographic changes into a New Keynesian model and estimate

it using Bayesian methods. With the estimated model, I study how demographic changes

impact the drivers of business cycles, and decompose the observed evolution of aggregate

variables into demographic and business cycle shocks. By taking this approach, the key con-

tribution of my paper relative to the existing literature is to quantitatively explore the inter-

actions that arise between aging, monetary policy, and business cycle shocks. The existing

literature, by contrast, largely studies the impact of demographics by feeding demographic

shocks into large-scale overlapping generations models.

Demographic changes generate significant trends in real and nominal variables. I find that
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demographic shocks alone are responsible for about 40% of the decline in output relative to

trend between 2008 and the end of 2019. Demographics also account for about a 1 percentage

point decline in the real interest rate and a 2 percentage point decline in the nominal interest

rate between 1990 and 2019. I find that the interactions between demographic changes and

business cycle shocks are quantitatively important such that, had demographics not changed

between 1986 and 2019, the ZLB would have been a much less significant constraint on

monetary policy. In this counterfactual, the Federal Reserve would have been able to lower

the real interest rate by an additional 1 to 2 percentage points in 2009 and 2010.

Estimating the model with demographic shocks also affects the posterior estimates of

the model’s structural parameters and the interpretation of which shocks drive business cy-

cles. Accounting for slow-moving demographic trends lowers the importance of productivity

shocks and raises the role of markup shocks for driving output and consumption, illustrating

how the propagation of shocks can change under demographic trends.1 Furthermore, the

decline in interest rates caused by demographics brings the policy rate closer to the ZLB.

In simulations of the estimated model, I find that the frequency of ZLB episodes increases

over time. If demographics are fixed at their 1990 level, the ZLB binds for 1% of the time.

If instead demographics are fixed at their 2020 level, the ZLB binds for 12% of the time.

Forward guidance, or lower-for-longer policy, would extend these lower bound episodes.

The nonlinearities associated with the ZLB and forward guidance policy mean that it is a

nontrivial problem to assess which shocks, other than demographics, were responsible for the

decline in output following the Great Recession. To shed light on this, I feed the estimated

structural shocks into a version of the model that abstracts from the ZLB, and find that the

contribution of aggregate shocks that capture financial distress depressed output, but were

partly offset by positive government spending shocks between 2009 and 2012. I also find

that forward guidance policy was able to mitigate the impact of the ZLB and kept output

from falling by a further 2 to 5 percentage points between 2011 and mid-2013.

1This relates to studies of how structural changes can affect the impact of shocks, e.g. Kulish and Pagan
(2016); Canova et al. (2015); Wong (2015); Jaimovich and Siu (2012); Fernández-Villaverde et al. (2007).
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To make it feasible to conduct a full information Bayesian estimation to parameterize

the model, I need a fast and efficient solution method. Methodologically, I show how to

parsimoniously model anticipated demographic shocks alongside the ZLB and a standard

set of business cycle shocks. In particular, I show that my model is well approximated by an

aggregate representation with time-varying and anticipated changes to the parameters of the

model that are exogenous functions of demographic variables. I exploit the resulting com-

putational advantages to filter quarterly data for the model’s structural shocks, accounting

for the trends caused by demographic shocks, the ZLB, and forward guidance.2

I find that demographic shocks reproduce well the long-run trends observed in the US

economy, consistent with the work of Gagnon et al. (2021), Eggertsson et al. (2019), Aksoy

et al. (2019), and Antolin-Diaz et al. (2017). Between 1990 and 2015, changes in the compo-

sition of the workforce due to an aging population explain a decline of around 2 percentage

points in the labor force participation rate, with a further decline of 4 percentage points ex-

pected by 2035. This contraction of the labor force and a decline in savings and investment

as fewer workers save for retirement lowers growth, consistent with the trend observed.

2 Model

This section outlines a New Keynesian model with demographic and business cycle shocks.

The model features individuals of different ages, monopolistically competitive firms that

produce with capital and labor and face price adjustment costs, aggregate shocks, monetary

policy with nominal rates subject to the ZLB, and fiscal policy.

2.1 Households

Demographics Individuals are members of overlapping cohorts. Each cohort lives for a

maximum of T periods, so that the age range of an individual is 0 to T − 1. A cohort is of

2The implementation of the ZLB and forward guidance follows Kulish et al. (2017), Guerrieri and Ia-
coviello (2015), and Jones (2017).
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mass nst and comprised of a continuum of identical members of age s, measured at the start

of period t. The total size of the population at time t is:

nt =
T−1∑
s=0

nst . (1)

I abstract from trend population growth, and normalize the initial population size to 1.

Each period, a fraction of each cohort dies with exogenous age-specific mortality rate γst :

ns+1
t+1 = (1− γst )nst . (2)

These mortality rates are time-varying. For example, permanent decreases in mortality rates

imply increases in longevity. A maximum lifespan of T implies γT−1
t = 1.

Household problem An individual of age s has the period utility function u(cst , `
s
t) and

chooses consumption cst , labor supply `st , one-period risk-free bonds bst , and loans to capital

producing firms bsk,t, to maximize lifetime utility. The value function of an individual of age

s at period t is, in recursive form:

V s
t = max
{cst , `st , bst , bsk,t}

{
χtu(cst , `

s
t) + β(1− γst )EtV s+1

t+1

}
, (3)

where the expectation is taken with respect to the aggregate shocks, β is the discount factor,

and χt is an aggregate autoregressive process subject to iid normal shocks:

lnχt = (1− ρχ) lnχ+ ρχ lnχt−1 + σχεχ,t. (4)

The unintentional bequests made by those who die between periods are aggregated and

redistributed to the remaining living households of the same cohort. Individuals have age-

specific productivities zs, receive a transfer from the government ξst , earn a return Rt on last

period’s bond holdings bs−1
t−1 , earn the return Rk,t on last period’s loans to capital-producers
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bs−1
k,t−1, receive 1

nst

dt
pt

dividends from firms, and ψst for the redistributed unintentional bequest.3

These features imply that the period budget constraint of an individual of age s is:

cst +
bsk,t
ptRk,t

+
bst
ptRt
≤ zswt`

s
t(1− τwt ) +

bs−1
t−1

pt
+

bs−1
k,t−1

pt
+ τ st . (5)

where τ st = ξst + ψst + 1
nst

dt
pt
− T gt collects various transfers and a lump-sum tax T gt , wt is the

nominal wage rate, τwt is a labor income tax, and pt is the price level. In the last period of

life, the budget constraint is:

cTt ≤
bT−1
k,t−1

pt
+
bT−1
t−1

pt
+ τTt . (6)

By assumption, an individual retires fully from the labor market in her last period of life.

Individuals are born with zero wealth, so that b0
k,t = 0 and b0

t = 0 for all t, and nominal

bonds are in net zero supply bt =
∑

s n
s
tb
s
t = 0. Substituting in for the unintentional bequests

ψst =
ns−1
t−1

nst

[
bs−1
t−1

pt
+

bs−1
k,t−1

pt

]
, and denoting the marginal utility of wealth of an individual of age

s in time t by λst , the optimal choice of risk-free bonds implies a standard Euler equation:

Et
[
λs+1
t+1

λst

1

Πt+1

]
=

1

β

1

Rt

, (7)

where Πt = pt/pt−1 is the rate of inflation.

2.2 Firms

There are two types of firms in the economy, intermediate goods-producing firms, and capital

goods-producing firms. A continuum of intermediate goods-producing firms hire capital and

labor from households to supply a substitutable good yt(i) at price pt(i) to final goods pro-

ducers. Final goods producers, in turn, use a CES technology with elasticity of substitution

ξt to aggregate the intermediate goods into a final good which it sells to consumers at the

3The redistribution scheme for unintentional bequests scales the return on savings by 1/(1− γs−1
t−1 ).
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price pt. Capital kt−1 is hired from capital producers, while aggregate labor hired by the

firm is in efficiency units of labor `t =
∑

s z
snst`

s
t . The production function of firm i is:

yt(i) = µ1−α
t (kt−1(i))α (Zt`t(i))

1−α , (8)

where Zt
Zt−1

= z generates trend growth, and µt is an aggregate autoregressive TFP process:

lnµt = (1− ρµ) lnµ+ ρµ lnµt−1 + σµεµ,t, (9)

where εµ,t is a standard normal innovation. Denoting mct(i) as the Lagrange multiplier on

the firm’s cost minimization problem min{kt−1(i), `t(i)} rtkt−1(i) + wt`t(i), the rental rate on

capital is rt = αmct(i)
yt(i)
kt−1(i)

, and the wage is wt = (1 − α)mct(i)
yt(i)
`t(i)

. Intermediate goods-

producing firms also face a Rotemberg quadratic cost of adjusting prices, parameterized by

φp. The problem of the firm i is to choose its price pt(i) to maximize firm value:

max
pt(i)

Et
∞∑
t=0

βtλt

(
dt(i)

pt

)
, (10)

where λt is a weighted average of individuals’ Lagrange multipliers and real dividends are:

dt(i)

pt
=

(
pt(i)

pt

)1−ξt
yt −mct(i)

(
pt(i)

pt

)−ξt
yt −

φp
2

[
1

Π∗
pt(i)

pt−1(i)
− 1

]2

yt, (11)

where Π∗ is the inflation target and ξt is the elasticity of substitution between intermediate

goods which is subject to stochastic shocks:

ln ξt = (1− ρξ) ln ξ + ρξ ln ξt−1 + σξεξ,t. (12)

The first order condition for the optimal choice of price resetting is:

βφpEt λt+1

λt

yt+1

yt

[
Πt+1

Π∗
− 1
] [

Πt+1

Π∗

]
= ξt − 1− ξtmct + φp

[
Πt
Π∗
− 1
] [

Πt
Π∗

]
, (13)
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Log-linearizing (13) yields a standard forward-looking New Keynesian Phillips curve. I

denote the slope of the log-linearized Phillips curve by εp, which is a function of the steady-

state elasticity of substitution ξ and the price adjustment cost parameter φp.

The problem of the capital-producing firms is standard: they borrow from households

and accumulate capital to maximize market value. Capital adjustment incurs a quadratic

cost parameterized by φk. These adjustment costs are subject to an aggregate, exogenous

autoregressive process κt, which captures changes in the efficiency of investment adjustment:

lnκt = (1− ρκ) lnκ+ ρκ lnκt−1 + σκεκ,t. (14)

This problem gives rise to a Tobin’s Q equation, linking the investment of capital to its

shadow price and its relative return.

2.3 Monetary Policy

Monetary policy operates in one of two possible regimes. In the first regime, the nominal

interest rate is set according to a Taylor rule, as in Smets and Wouters (2007):

Rt

R
=

(
Rt−1

R

)φr (Πt

Π∗

)(1−φr)φπ ( yt
yF
t

)(1−φr)φy ( yt/yt−1

yF
t /y

F
t−1

)φg
exp(σRεR,t). (15)

The nominal interest rate responds to its own lag with weight φr, deviations in inflation from

a target rate Π∗ with weight φπ, deviations in output from its flexible-price level yFt with

weight φy, and the growth rate of output relative to the growth rate of potential output with

weight φg, and is subject to stochastic shocks εR,t.

In the second regime, the nominal interest rate is at the ZLB:

log(Rt) = 0. (16)

Monetary policy can be in the ZLB regime in two ways: first, if the Taylor rule calls for
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negative nominal interest rates – that is, log(Rt) = max (0,Taylor Rulet) – and second,

if the Fed has announced, or has previously announced, an extension of the ZLB beyond

that implied by the constraint and the Taylor rule. I assume that the Fed can manipulate

expectations of how the path of interest rates evolves when it is at zero, as in Eggertsson

and Woodford (2003) and Werning (2012). In estimation, I use survey data from 2009 to

2015 to discipline the expected durations of the zero interest rate regime.

2.4 Government

The government taxes labor income at the rate τwt to fund a pay-as-you-go social security

system. The transfer paid to individuals above eligibility age T ∗ depends on the accumulated

pre-tax labor income of the worker, and a parameter ω governing the replacement rate of

past earnings. Denote by W s
t accumulated gross lifetime earnings, defined recursively as:

W s
t =


wtz

s`st +W s−1
t−1 , if s < T ∗

W s−1
t−1 , if s ≥ T ∗.

(17)

The amount ξst redistributed to an agent of age s ≥ T ∗ depends on W s
t :

ξst = ω
W s
t

(T ∗ − 1)
, (18)

where the denominator reflects the amount of time that W s
t is accumulated over. For those

younger than the eligibility age T ∗, the transfer ξst = 0.4 The budget constraint of the social

security system is: ∑
s

nstξ
s
t =

∑
s

nstz
swt`

s
tτ
w
t . (19)

The tax rate τwt adjusts to equalize social security outlays and tax revenues.

Finally, the government levies a lump-sum tax on households to pay for government

4I abstract from issues of the sustainability of pension systems in an aging society and do not allow
pension funds to accumulate assets or liabilities (see Attanasio et al., 2007, for an analysis of these issues).
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expenditures gt, which are assumed to be autoregressive and subject to stochastic shocks:

ln gt = (1− ρg) ln g + ρg ln gt−1 + σgεg,t, (20)

where the budget constraint of exogenous government expenditures is gt = ntT
g
t .

3 Model Approximation and Solution Method

To address the computational challenges arising from this model’s rich sources of hetero-

geneity, persistence and aggregate shocks, I argue in this section that the model can be

approximated very well by a representative agent framework with time-varying parameters

that are functions of exogenous demographic variables. Furthermore, because demographic

changes are assumed to be perfectly foreseen, the path of these time-varying parameters

are also assumed to be fully anticipated. I show how this anticipated path of time-varying

parameters gives rise to a VAR representation that makes a Bayesian estimation feasible.

3.1 Derivation

The approximation is derived in two steps. First, the restriction that individuals can trade

assets only when alive is relaxed. In the second step, we will show that when this timing

assumption is relaxed, the model has a tractable aggregate representation.

Timing Assumption In the model’s overlapping generations setup, individuals are born

with no wealth and make period-by-period asset trades. Assume, instead, that each genera-

tion is alive at t = 0 and can trade claims to future consumption, and write the preferences

of an individual of age s as:

∞∑
t=0

βt

[
t∏

j=0

(1− γs+j−1
t+j−1 )

]
φs+tt

∑
σt

Pr
[
σt|σt−1

]
u
[
cs+tt (σt), `s+tt (σt)

]
, (21)

10



where the term φs̄t = 1 for ages 0 ≤ s̄ ≤ T − 1, and φs̄t = 0 otherwise, indicating that

individuals value utility only in the periods when they are between the ages of 0 and T − 1.

The term Pr [σt|σt−1] denotes the transition probability from state σt−1 to σt.

A key assumption for the approximation is that unintentional bequests by individuals

who die in each period are redistributed to members of the same generation. This means that

individuals are insured against their only source of idiosyncratic uncertainty: that associated

with mortality risk γst . The Euler equation arising from the choice of savings in the problem

where individual’s maximize (21) subject to the lifetime budget constraint is then:

λst(σ
t) = β

∑
σt+1

Pr
[
σt+1|σt

]
λs+1
t+1(σt+1)

Rt(σ
t)

Πt+1(σt+1)
, (22)

where λst(σ
t) is the Lagrange multiplier on the individual’s budget constraint. Without

idiosyncratic risk, it is possible to separate each individual’s marginal utility of wealth into

a component that does not depend on the aggregate state, and a component that does.

Because of this, between any two individuals, across two periods t and t′, the ratio of the

Lagrange multipliers is constant:

λst(σ
t)

λs
′
t (σt)

=
λs+t

′

t′ (σt
′
)

λs
′+t′

t′ (σt′)
=
λs
′

λs
, (23)

where λs = λt(σt)
λst (σ

t)
. The condition in Equation (23) is the same as that which arises when

there are complete asset markets.

Aggregate Representation Under Equation (23), the economy’s equilibrium can be

found by solving the problem of a social planner that maximizes a weighted sum of in-

dividuals’ utility functions. In the social planner’s problem, the planner first determines

how to allocate, within periods, aggregate consumption and aggregate labor supply between

individuals. Given the optimal allocation, the planner then solves its intertemporal problem

and maximizes aggregate consumption, capital, and labor supply subject to the economy’s
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resource constraint. This approach is based on the aggregation arguments made in Constan-

tinides (1982) and Maliar and Maliar (2003).

Assume that an individual of age s has a separable period utility function over consump-

tion cst and hours `st of the type
(cst )

1−σ

1−σ − v
s (`st )

1+ϕ

1+ϕ
. Under these preferences, as shown in the

Online Appendix, there is a representative agent with preferences over aggregate consump-

tion ct and aggregate units of labor `t that take the form:

U(ct, `t) = φt
c1−σ
t

1− σ
− vt

`1+ϕ
t

1 + ϕ
. (24)

The representative agent’s problem is to maximize (24) over time by choosing ct, `t, and

aggregate capital kt subject to the economy’s resource constraint and its production function

yt = θ1−α
t kαt `

1−α
t . The relationship between units of labor and aggregate hours is `t = Atht.

In the Online Appendix, I show that θt and At are the following time-varying parameters:

θt =
∑
s

nstz
s, and At =

∑
s n

s
t(ẑ

s)1+1/ϕ(vsλs)−1/ϕ∑
s n

s
t(ẑ

s)1/ϕ(vsλs)−1/ϕ
, (25)

where the value ẑs = zs/θt denotes individual s’s relative productivity and the λs parameters

are the Pareto weights attached to an individual of age s. The shock θt encodes changes in

output caused by the size of the workforce and its distribution over productivity levels. For

example, populations that have a larger fraction of more productive workers have relatively

higher aggregate productivity and θt. The time-varying parameter At affects the hours

needed to obtain an effective unit of labor, and is a population-weighted average of relative

productivity and the disutility of providing labor. If labor supply were inelastic, θt and At

affect the labor input by
∑
s n

s
tz
s∑

s n
s
t

: the labor input reflects only the population composition.

The term φt inversely affects the marginal utility of consumption, and has a simple

expression mapping to the size of the population at each point in time:

φt =

[∑
s

nst (λs)
1
σ

]σ
. (26)
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The term vt is a time-varying parameter affecting the marginal disutility of labor:

vt =

[∑
s

nst(ẑ
s)

1
ϕ

+1 (vsλs)−
1
ϕ

]−ϕ
, (27)

so that vt is a population-weighted average of age-specific labor disutilities. The greater the

relative size of the population with high disutilities of providing labor, the higher is vt. Equat-

ing the marginal utility of consumption and the marginal disutility of labor, and substituting

in for hours worked gives the labor wedge as a function of demographics wt/(`ϕt /c−σt ) = vt/φt.

Two additional trends are needed in the computations to ensure the aggregate represen-

tation will approximate the aggregate dynamics of the full lifecycle solution. The first is a

gradual trend in the discount factor to account for the reduction in the average mortality

rate over time. This term is constructed by mapping the change in average life expectancy

to the change in the average mortality rate, and then multiplying the discount factor by

the change in that average mortality.5 The second trend is to proportional taxes that are

used to finance the social security system. I take the path of labor income taxes from the

non-stochastic perfect foresight path of the overlapping generations setup.

In the approximation of the model, demographics therefore affects the aggregate economy

through time-varying parameters which are functions of observable population dynamics

(nst), the age-specific parameters of the model (zs and vs), and the Pareto weights that

the planner attaches to each generation (λs). Assuming the planner equally weights each

generation, these trends are straightforward to compute and do not depend on endogenous

variables. In the Online Appendix, I verify that the aggregate approximation recovers closely

the paths of the aggregate variables due to demographic shocks by comparing them to the

paths of the decentralized lifecycle model under perfect foresight and demographic shocks.

5The contribution of this term to the decline in real interest rates over the estimation period is relatively
small. The rise in average life expectancy maps into a very slight increase in the discount factor by 0.05%
between 1986Q1 and 2019Q4 (the sample period for the Bayesian estimation). Of the 1.2 percentage point
decline in the real interest rate caused by demographics, this term by itself causes the annual real interest
rate to fall by only about 19 basis points.
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I also show in the Online Appendix that, in a second-order approximation of a calibrated

version of the full lifecycle model subject to stochastic aggregate shocks, the decision rules

across individuals are approximately linear. The approach therefore shares the intuition

that makes the Krusell and Smith (1998) algorithm successful: when the decision rules

are close to linear in the state variables, we have a near-Gorman-aggregation setup. In

this case, for any aggregate wealth distribution, the Engel curves have a similar slope for

each individual, and it does not matter for the response of aggregate consumption how

any additional income is allocated across agents. These results are consistent with the

findings of Ŕıos-Rull (1996), who reports that the business cycle properties of large-scale,

stochastic, overlapping-generations economies are similar to the properties of representative

agent real business cycle models. The contribution in this paper is to additionally describe

an approximation that makes likelihood estimation computationally feasible.

3.2 Solution Method

In this section, I describe the methodology used to solve for the path of the aggregated model

under the anticipated path of time-varying demographic parameters, and describe how the

methodology implements the occasionally binding ZLB.

Time-Varying Demographic Trends Let xt be the vector of model variables, and εt a

vector that collects the exogenous unanticipated shocks. The linearized rational-expectations

approximation of the model with time-varying parameters is:

Atxt = Ct + Btxt−1 + DtEtxt+1 + Ftεt, (28)

where At, Bt, Ct, Dt, and Ft are time-varying matrices that encode the structural equations

of the model linearized at each point in time around the steady-state corresponding to the
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time t structural parameters.6 A solution to the problem with anticipated time-varying

parameters exists if agents expect the structural matrices to be fixed at some point in the

future at values which are consistent with a time-invariant equilibrium (Kulish and Pagan,

2016). In this case, the solution has a time-varying VAR representation:

xt = Jt + Qtxt−1 + Gtεt, (29)

where Jt, Qt, and Gt are conformable matrices which are functions of the evolution of beliefs

about the time-varying structural matrices At, Bt, Ct, Dt, and Ft

Qt = [At −DtQt+1]−1 Bt

Jt = [At −DtQt+1]−1 (Ct + DtJt+1) (30)

Gt = [At −DtQt+1]−1 Et.

This iteration is obtained by noting that, from (29), Etxt+1 = Jt+1 + Qt+1xt, which is

substituted into (28) and rearranged for xt. The law of motion for the model’s variables at

a time period t therefore depends on the full anticipated path of the structural matrices.

The final structure of the economy needed for the iteration (30) is the one that arises at

the expected end of the demographic transition and under Taylor-rule policy, that is, the

solution matrices {JT ,QT} associated with the structural equations {AT ,BT ,CT ,DT ,FT}

in the final period T . Under my calibration, this final demographic structure applies from

the year 2060 onwards.7 Demographic trends in the model are thus perfectly foreseen from

1960 through to 2060. This assumption helps to make the Markov Chain Monte Carlo-

based estimation computationally feasible, as standard methods to compute the solution

6One can instead linearize the model around its original steady-state, the steady-state associated with
the time-varying system’s final structure, or the steady-state implied by the structure at each point in time.
Given the somewhat large movements in the steady-state induced by demographic changes, I use the latter
approach, linearizing each set of structural matrices around the steady-state implied by that structure.

7This approach resembles that of Fernández-Villaverde et al. (2007) but instead of innovations driving
parameter drift, the time-varying parameters are perfectly foreseen functions of exogenous demographics.
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matrices {JT ,QT} need to be used only once. The sequence {Jt,Gt,Qt} obtained from (30)

is computationally fast. In the Robustness section, I report how the trends of the model

are similar if demographic changes were instead unexpected every period. In this case, to

form the time-varying VAR solution, we solve for the solution associated with (28) in every

period and use the sequence of those solutions to form (29) instead of the iteration (30).

Zero Lower Bound To implement the occasionally-binding ZLB in the solution (29), we

follow Guerrieri and Iacoviello (2015) and Jones (2017) and define two regimes in (28) for each

period, one for when the ZLB does not bind, and one for when the ZLB binds. If the ZLB

binds, we assume that agents believe no shocks will occur in the future and iterate backwards

through our model’s equilibrium conditions from the date that the ZLB is conjectured to

stop binding. We then iterate on the periods that the interest rate is conjectured to be in

effect until it converges, after which the solution is (29).8

4 Estimation

This section discusses how the parameters of the model are set, including the calibration of

the lifecycle parameters of the model, the demographic shocks which drive the trends in the

model, and the estimation of the shocks that govern the business cycle.

4.1 Assigned and Calibrated Parameters

Before estimation, a subset of the parameters and the demographic shocks are calibrated.

8See also Canova et al. (2015) and Kulish and Pagan (2016). Jones et al. (2021) discusses how forward
guidance is an extension of the ZLB regime beyond the duration implied by the structural shocks and the
constraint log (Rt) = max (0,Taylor Rulet).

16



4.1.1 Lifecycle Parameters

The model is quarterly. Individuals begin life at 16 years of age and live for at most 80 more

years, up to age 95. Full retirement is only imposed in the last period of life.9

I calibrate the disutility of providing labor vs with a scaled cumulative density function of

a normal distribution, so that vs increasing in s (see Kulish et al., 2010). This specification is

motivated by studies which link the disutility of work to deteriorating health. The parameters

of the function for vs are chosen so that the labor force participation rates by age broadly

match those observed in 2000. For the social security system, I set the replacement ratio

of accumulated earnings λ to 46.7%, the same value that is used in Attanasio et al. (2007).

Retirement benefits are received from age 65 on (T ∗ = 49).

I calibrate the age-productivity parameters zs to the age-experience earnings profile. I

follow Elsby and Shapiro (2012) in constructing the log experience-earnings profile using

deflated data on full-time, full-year workers. The data is decennial Census data from 1960 to

2000, and annual American Community Survey data from 2001 to 2007.10 To minimize cohort

effects, I pool, across years, high school dropouts, high school graduates, those with some

college education, and those who have completed college or higher education.11 Panel A of

Figure 2 plots the earnings-profile over age. The estimates imply a peak increase in earnings

of about 134% at age 45, before gradually declining around the age of 50: in line with the

estimate of Guvenen et al. (2015) who find an increase in the earnings of the mean worker of

127%. There is less reliable data on the earnings of older workers, so after age 65, I calibrate

the productivity of workers to decay by 20% a year.

I assess the calibration of the lifecycle parameters in Figure 2 by plotting, in Panel B, the

labor force participation rate by age, in 2000, in the model and the data, and in Panel C,

9Given low labor supply at older ages, this choice is not too important.
10Computed off IPUMS-USA extracts. A full description is given in the Online Appendix.
11In robustness exercises reported in the Online Appendix, I distinguish between education groups and

analyze how anticipated changes in the earnings profile map to labor supply decisions. The results indicate
that the patterns of the aggregate variables are similar, suggesting that age-compositional changes in the
population primarily drive aggregate dynamics.

17



Figure 1: Output, Interest Rates, and the Employment-to-Population Ratio

Figure 2: Parameterization of Lifecycle Parameters and Implications

Data

Model

Notes: The data for the asset profile is taken from the Survey of Consumer Finances for 2013, HP-
filtered, and normalized to the values of assets when 60. The productivity profile is computed from
pooled Census and American Community Survey datasets. Details are in the Online Appendix.

18



the age-profile of assets normalized to holdings at age 60, in 2013, in the model and in the

Survey of Consumer Finances. The calibration implies labor force participation rates that

rise when young, flatten out during an individual’s prime working life, and decline rapidly

around retirement. The lifecycle asset-profile is hump-shaped and peaks around 60 years.

Individuals borrow when young in the model and begin accumulating assets around age 35.

4.1.2 Mortality Profiles

Next, I calibrate the mortality probabilities of each generation during the 80 years they could

possibly live, γst , to the actuarial probabilities reported by the Social Security Administra-

tion.12 By calibrating to these probabilities, I also match changes in the life expectancy of

each generation over time, conditional on an individual reaching 16 years of age. The values

used are the cohort-specific survival rates computed for the cohort year of birth. These pro-

files include both observed survival rates of cohorts up to their current age, and extrapolated

survival rates based on the Social Security Administration’s forecasts of life expectancy. I

assume that all changes to these actuarial probabilities are exogenous and perfectly foreseen.

For the initial γst profile, I use the survival probabilities reported for those born in 1900 on-

wards. For those cohorts born before 1900 but who are alive in 1940, I use extrapolated

values of the survival probabilities.13 Under the calibration, between 1950 and 2020, life

expectancy for 16 year olds increases from about 77 years to about 85 years.

4.1.3 Incoming Cohort Size Shocks

I choose anticipated shocks to the size of the incoming cohort so that the change in the

observed cohort share is the same as the change in the model cohort share.14 This ensures

12These probabilities were sourced from Table 7 from the Cohort Life Tables for the Social Security Area
by Calendar Year, in Actuarial Study No. 120 by Felicitie C. Bell and Michael L. Miller, available at:
https://www.ssa.gov/oact/STATS/table4c6.html. A full description is given in the Online Appendix.

13Because the survival probabilities are low for those years, the results are robust to alternative specifi-
cations and are not important for the model outcomes beyond 1970.

14Choosing initial population shocks to matching the changes is necessary because the model is initialized
at the 1940 steady-state and matching the actual cohort sizes would imply very large and counterfactual
initial population shocks.
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that the model captures the wave of the baby-boomer generation and changes in the popu-

lation distribution due to, for example, immigration. I assume that changes to the incoming

population beyond 2015 decay to zero, so that the population distribution converges to the

steady-state implied by the mortality profile that is constant from 2060.

I plot in Panel D of Figure 2 the median age of the population above 16 years of age

implied by the calibrated mortality profiles and the incoming cohort size shocks. The profile

tracks well the corresponding median age of those above 16 years of age in the data, declining

from around the 1960s to around the 1980s to about 37 years of age, before steadily increasing

as the baby-boomer population ages and longevity continues to rise.

4.1.4 Preference and Nominal Parameters

I calibrate the remaining parameters to values which imply steady-state capital-output ratios

that align with those in the Bureau of Labor Studies’ Multifactor Productivity (BLS-MFP)

program (see Fernald, 2015).15 I set capital to depreciate by δ = 8% a year. The capital

share α is set to 1/3, the average of the capital share reported by Fernald (2015) over 1948

to 2015. The intertemporal elasticity of substitution σ is set to 2, and the inverse Frisch

elasticity of labor supply ϕ is set to 2, in line with the estimates of Reichling and Whalen

(2012) and with the analysis of Rios-Rull et al. (2012). Both values are also in the range

considered by Auerbach and Kotlikoff (1987) in a computational overlapping generations

model. The quarterly discount factor β is set to 0.99351/4. The trend growth rate is set to a

value of z = 1.0034, the mean of output growth over the sample. Together, these parameters

imply a capital-output ratio in 2000 of about 2.7, which is the value of the capital-output

ratio in 2000 reported the BLS-MFP, and a real interest rate in 2000 of 1.5 percent, slightly

higher than the value reported by Gagnon et al. (2021) in their baseline specification, and

within the range reported in the time-series estimates of Johannsen and Mertens (2021).

I calibrate a set of the parameters describing the frictions and the nominal side of the

15These observed capital-output ratios vary between 2 and 2.7 over the period 1950 to 2013. A description
of the BLS-MFP dataset used is given in the Online Appendix.
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economy to values commonly used in the literature. The steady-state value of ξ is set to a

standard value of 5, which implies a steady-state markup over marginal costs ξ/(ξ − 1) of

25%. The parameter governing the quadratic cost of capital adjustment φk is set to 40. The

slope of the Phillips curve εp, which maps to the quadratic cost of price adjustment φp, is

set to 0.01. This value translates into a Calvo probability of price adjustment every quarter

of about 10%, consistent with the estimates in Del Negro et al. (2015). The annual inflation

target Π∗ is set to 2%. Finally, as in Jones et al. (2018), I use the values that Justiniano et al.

(2011) estimate for the Taylor rule parameters, which at their posterior mode are φr = 0.86,

φπ = 1.71, φy = 0.05, and φg = 0.21.

4.2 Bayesian Estimation

I next use Bayesian likelihood techniques to estimate the parameters of the model’s shocks

that drive business cycle fluctuations around the demographic trend.

4.2.1 Quarterly Data

The solution (29) can be written in state-space form, allowing the use of Bayesian likelihood

methods to estimate the remaining parameters of the model. The quarterly data used are:

Data =

{
log

(
yt
yt−1

)
, log

(
ct
ct−1

)
, log

(
it
it−1

)
, log Πt, ˜logRt, T t

}
, (31)

over the time period 1986Q1 to 2019Q4. I use, as observables, the growth rate of output

per capita, of consumption per capita, of investment per capita, the GDP deflator, and the

Fed Funds rate, and follow Smets and Wouters (2007) in constructing these series.16 The

nominal interest rate is removed from the set of observables when the ZLB binds between

2009Q1 and 2015Q3. I implement this with a time-varying observation equation in the state-

space representation of the model (see Kulish, Morley and Robinson, 2017). The sequence

16The Online Appendix provides more details of the data series used in estimation, and additional details
of the econometric approach.
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of expected durations of the ZLB, Tt, between 2009Q1 and 2015Q3 are taken from the Blue

Chip Financial Forecasts survey from 2009 to 2010 and the New York Federal Reserve’s

Survey of Primary Dealers from 2011 to 2015.

4.2.2 Parameter Estimates and Variance Decompositions

Table 1 reports moments of the prior and posterior distributions for the parameters govern-

ing the shock processes. The priors are diffuse, with uniform priors used for the standard

deviations of the shock processes. I use a Markov Chain Monte Carlo algorithm to charac-

terize the parameters’ posterior distributions, computing two independent chains of 200,000

draws with the first 100,000 draws discarded as a burn-in. The Online Appendix provides

the full details of the estimation and an analysis showing that the two chains converge to

the same posterior distributions.

The estimated persistence and size of the shock processes are, by themselves, difficult

to interpret. I thus report, in Table 2, the forecast error variance decompositions of the

observable variables at the 2-quarter horizon (in Panel A) and at the infinite (unconditional)

horizon (in Panel B).17 These decompositions reveal how important each shock is in driving

the observable variables around the demographic trend.

Inflation is largely determined by disturbances to markups at the short and long-horizons.

Markup shocks also explain about 21 percent of the variance of output growth at the infinite

horizon. As reported in the Online Appendix, markup shocks account for large fractions of

the variance of the long-run levels of output (64 percent), consumption (29 percent), and

investment (44 percent). The contribution of markup shocks to the level of output is close to

the long-run variance decomposition of output caused by the combination of wage and price

markup shocks in the estimated model of Smets and Wouters (2007) (about 55 percent),

which they argue captures supply-side fluctuations which dominate output fluctuations in

the long-run. Household preference shocks explain about 25 percent of the variance of the

17The Online Appendix plots the impulse responses of the observable variables to each shock with pa-
rameters set to the mode of the posterior distributions.

22



Fed Funds rate at the short horizon, and 38 percent at the long horizon. As discussed in

the next section using counterfactual simulations, these shocks are largely accomodated by

monetary policy, but can be highly contractionary when monetary policy is constrained (see

also Jones, Midrigan and Philippon, 2018).

Monetary policy shocks explain between 5% and 14% of the growth rates of output, con-

sumption, and investment at the half-year horizon. Consistent with the results in Justiniano

et al. (2011), investment shocks are very important for explaining business cycle and long-

run movements in all the observable variables, and account for 48% and 72% of the forecast

error variance of output and investment at the half-year horizon, with similar fractions at the

infinite horizon. These investment shocks capture disruptions in the intermediation between

savings and investment and directly affect the shadow value of installed capital – Tobin’s

Q – in the reduced-form of the model. I show in the Online Appendix that these shocks

correlate strongly with the Corporate Baa to 10 year Treasury yield spread, a measure of

financial stress used in the literature (Del Negro, Giannoni and Schorfheide, 2015). Consis-

tent with the large literature that has studied and found financial shocks to be important

for explaining macroeconomic fluctuations around the Great Recession, I show in Section

5.4 that these shocks can explain much of the sharp drop in output around 2008-09 and its

gradual recovery. Finally, technology shocks explain 20 percent of the variance of the Fed

Funds rate at the 2 quarter horizon, and small fractions of the other variables at both the

short and longer horizons.

Impact of Demographic Trends for Estimation I assess the impact of including de-

mographic shocks by estimating a version of the model where demographics are held constant

at their values in the year 2000.18

When demographics are not explicitly accounted for, the estimation assigns a more im-

portant role for technology shocks in explaining the growth rates and levels of real output and

consumption. As reported in Panel C of Table 2, technology shocks explain almost 10 percent

18The Online Appendix reports the posterior distributions for this estimation.
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of the unconditional variance of output growth (compared to 3 percent without demograph-

ics), and 14 percent of the unconditional variance of consumption growth (compared to 4

percent without demographics). As reported in the Online Appendix, without demographic

trends, technology shocks account for about 19 percent of the long-run level of output, 14

percent of the level of consumption, and 8 percent of the level of investment, compared to

being essentially zero for all three variables when demographic trends are included.

We can inspect the impulse responses of these variables to the exogenous shocks to under-

stand these observations.19 When demographic trends are not included, technology shocks

have a much more persistent effect on the levels of real variables. Mechanically, this reflects

the estimates – when demographics are not included in the model, the estimated persistence

of technology shocks increases from 0.82 to 0.97 at the posterior mode. Economically, this is

because demographic trends manifest themselves in the same way as persistent technology

shocks over the estimation sample period, in that they simultaneously raise output, con-

sumption, and investment, and lower inflation and the Fed Funds rate. This in part reflects

the lifecycle accumulation of human capital by workers in the model, which at the aggregate

level generates productivity dynamics that match those observed, as reported in more detail

in the Online Appendix. Omitting demographic trends means that those dynamics are cap-

tured instead with persistent technology shocks. With more persistent technology shocks,

less of the long-term response of real variables is explained by other shocks, reducing their

importance in the variance decomposition.20

5 Demographics and the Business Cycle

I next study, using the estimated model, the role that demographic changes have had in

explaining the decline in log output relative to its pre-crisis trend. Demographics cause a

19The Online Appendix plots the impulse responses under the parameters at the posterior modes from
the estimations with and without demographic trends.

20This can also be seen in the impulse response functions – the responses of real variables to technology
shocks are larger and more persistent in the model that omits demographics trends. On the other hand,
markup shocks are larger and more persistent in the model with demographic trends.
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direct effect on output and an indirect effect through constrained monetary policy. For the

direct effect, I first show that demographic shocks alone are responsible for over one-third of

the decline in output since 2007. For the indirect effect, I show that demographic changes

were substantially responsible for the ZLB binding between 2009 and 2015, generating an

additional non-linear effect on output. I show this by computing a counterfactual holding

demographics constant from 1986. After removing the forward guidance response of the Fed

to a binding ZLB, I find that output would have fallen by an additional 2% to 5% relative

to trend between 2009 and 2015.

5.1 Trends Due to Demographic Shocks

First, I discuss how demographic shocks alone affect the economy’s key variables, plotted

in Figure 3. Starting in 1986, I turn off all shocks except those to fertility and mortality

rates. Panel A plots an index of log output and illustrates how demographic changes cause

a slowdown in output growth relative to log output’s 1986 to 2007 trend. Panel B shows

that, between 1990 and 2019, the Fed Funds rate declines by about 2.5 percentage points.

In Panel C of Figure 3, I show that the real interest rate Rt − EtΠt+1 is expected to fall by

about 1.2 percentage points, driven by changes in the capital-output ratio. The difference

between the decline in the Fed Funds rate and the real interest rate reflects an approximate

1 percentage point decline in the rate of inflation driven by demographic changes and the

downward pressure that an aging population places on expected future marginal costs.

Regarding the implications of demographics alone for growth, from 1980 to 2019, my

model predicts annualized output growth falls by about 1.68 percentage points, which is

slightly above the decline predicted by the analysis of Gagnon et al. (2021). There are three

main channels through which output growth can change over time because of changing de-

mographics. Workers can supply more hours, affecting both output and aggregate labor.

There are also changes in physical capital, as individuals save and consume out of accumu-

lated savings in retirement. Third, the quality of labor can change; namely, changes in the
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distribution of workers resulting from demographic changes alters the average skill-level of

the workforce, which shows up in a decomposition of productivity growth as fluctuations in

the average productivity of labor (Fernald, 2015).

I decompose the model’s predictions for output growth and labor productivity growth

into their component parts and show that accelerating capital accumulation increases the

growth rate of both labor productivity and total output up to 1995, after which the growth

rate starts to decline.21 The change in labor supply has a large negative effect on productiv-

ity growth, but a positive effect on total growth, when the baby boomer cohorts enter the

labor force around 1960. A key component of both labor productivity and total growth is

the change in the average skill level of the workforce caused by the interaction of a changing

composition of the workforce with the age-productivity profile. The decomposition implies

that the contribution of the change in average labor quality to the growth rate of output and

output per worker peaks around 1990, adding roughly 0.3 percentage points to total growth

and productivity growth. The contribution of labor quality becomes a drag on productivity

growth in 2000 as a large fraction of workers reach the peak of the age-productivity profile,

exhausting the potential for further growth in average human capital across the workforce.

This force is forecast to depress productivity growth until 2030. In total, I find that demo-

graphics will be a drag on output growth through to 2070.

Figure 4 explores the trends generated by demographics alone in more detail by plotting,

in Panel A, the employment-to-population ratio in the model and the data. Demographics

alone capture the dynamics of the aggregate employment-to-population ratio well under the

calibration of the lifecycle parameters, which generated age-specific labor force participation

rates that are consistent with those observed. The employment-to-population ratio declines

in the model at a pace that is roughly as fast as that observed and is predicted to continue

to fall by a further 4 percentage points from 2020 to 2040. This result is driven by the

compositional changes in the workforce towards workers with lower participation rates (Panel

21This decomposition is presented in the Online Appendix.
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Table 1: Prior and Posterior Distributions of Estimated Parameters

Prior Posterior

Parameter Dist Median 5% 95% Mode Median 5% 95%

ρχ B 0.5 0.3 0.7 0.96 0.96 0.94 0.97
ρµ B 0.5 0.3 0.7 0.82 0.82 0.72 0.90
ρξ B 0.5 0.3 0.7 0.94 0.94 0.92 0.95
ρg B 0.5 0.3 0.7 0.98 0.98 0.97 0.99
ρκ B 0.5 0.3 0.7 0.93 0.93 0.91 0.95

100× σχ U 2.0 0.2 3.8 1.90 1.93 1.68 2.30
100× σµ U 2.0 0.2 3.8 0.67 0.65 0.45 0.82
100× σξ U 2.0 0.2 3.8 0.05 0.05 0.05 0.06
100× σR U 2.0 0.2 3.8 0.10 0.10 0.08 0.13
100× σg U 2.0 0.2 3.8 2.49 2.53 2.30 2.81
100× σκ U 2.0 0.2 3.8 1.16 1.18 0.90 1.54

Notes: χt is the household preference shock, µt is the technology shock, ξt is the price markup shock,

Rt is the nominal interest rate, gt is the exogenous government spending shock, and κt is the shock to

investment-specific adjustment costs. ‘B’: beta distribution, ‘U’: uniform distribution.

Figure 3: Output and Interest Rates, Demographics Only

Notes: The solid blue line plots the data and the red dot-dashed line plots the counterfactual.
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Table 2: Variance Decompositions, %

Variable

Shock
Preference Technology Markup Policy Government Investment

A. Conditional, 2 Quarter Ahead

Fed Funds Rate 25 20 3 2 3 46
Inflation 11 4 58 8 2 17
∆ Output 1 3 20 14 14 48
∆ Consumption 39 4 2 8 31 16
∆ Investment 5 1 17 5 0 72

B. Unconditional

Fed Funds Rate 38 7 10 1 11 34
Inflation 18 3 50 7 5 17
∆ Output 1 3 21 15 13 46
∆ Consumption 38 4 4 8 30 16
∆ Investment 5 1 18 5 0 72

C. Unconditional, Estimated Without Demographic Changes

Fed Funds Rate 24 8 8 1 11 47
Inflation 11 3 51 10 4 21
∆ Output 2 9 13 14 8 53
∆ Consumption 27 14 3 11 33 13
∆ Investment 2 2 11 5 0 80
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B of Figure 2), a point supported empirically by Aaronson et al. (2014).22 To understand

the contribution of demographics-induced changes in the composition of the workforce, a

simple shift-share analysis using observed age-specific participation rates and population

data reveals that about half of the total decline in the total labor force participation rate

since 1996 can be explained by changes in the age-composition alone.23

Demographic trends have important implications for the capital-to-output ratio, plotted

in the second panel of Figure 4. As life expectancy rises and mortality rates fall, aggregate

savings increases to finance longer expected retirements. As a result, the capital-to-output

ratio increases and the marginal product of capital and real interest rate fall. In addition, the

aging of the baby boomer cohorts generates an increase, and then decrease, in the path for the

real interest rate around the secular decline implied by increasing longevity. The oscillation

is driven by changes in the relative size and composition of the workforce. The workforce

is relatively young as the baby-boomers enter the labor market in the 1960s to 1980s, so

that aggregate hours supplied is high relative to capital, thus increasing the marginal return

to capital. As the baby-boomer cohort ages and accumulate savings for retirement, the

marginal return to capital and the real interest rate decline. This decline is then reinforced

by the withdrawal of the baby-boomer cohort from the labor market, depressing the marginal

return to capital, which stays low beyond 2030 (see also Carvalho, Ferrero and Nechio, 2016).

Finally, the model does a good job at matching the aggregate net savings rate observed,

as shown in Panel C of Figure 4 and consistent with its ability to match the evolution of the

capital-output ratio.24 The influx of the large baby boomer cohorts leads to an increase in

22Furthermore, to decompose the contribution of the mechanical effect of an aging population to the
decline in the labor input, we can compare (i) the labor input predicted by the model in our baseline exercise
where labor endogenously responds to wages, to (ii) the labor input predicted by the model when labor
supply is inelastic (ϕ → ∞). In this comparison, almost all of the forecasted decline in the labor input
is due to the mechanical effect of demographic changes; the endogenous response of labor in my model to
demographic changes mitigates the 8 percent decline in the labor input by 2030 (relative to 2015) by only 2
percentage points.

23This full shift-share analysis is presented in the Online Appendix.
24The net saving series in the data is from the US Bureau of Economic Analysis, net saving as a percentage

of gross national income (under FRED code W207RC1Q156SBEA). I add historical and projected population
growth rates to the model series (this adds roughly 1% to the net saving rate series historically, and only
about 0.4% in the long-run).
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the net saving rate from about 5% in 1980 to almost 7% by the mid-1990s as those cohorts

save for expected retirement. As the baby boomers start to leave the workforce and dissave,

the net saving rate gradually declines and turns negative in 2031, and stays negative until

about 2075. Demographic changes in my model are thus projected to depress the savings

rate well into the future. These forces are fundamentally the same as those driving the real

interest rate lower. In contrast, however, the real rate falls from the mid-1980s onwards,

which is a little earlier than the decline in the net savings rate. This reflects weaker labor

supply growth relative to the growth in the capital stock starting in the mid-1980s.

These results on the implications of demographics for macroeconomic trends are consis-

tent with the findings of other studies. Using a calibrated overlapping generations model,

Gagnon et al. (2021) find that demographic trends generate a decline in the growth rate from

around 2.3 percentage points in 1980 to just under 0.5 percentage points by 2030. They find,

similar to what is predicted by my model, that much of the decline is due to declining fer-

tility and the associated exit of the baby boomer generations from the labor force.25 In

an empirical study, Aksoy et al. (2019) predict an average decline in annual output growth

rates across OECD countries of 11/4 percentage points between 2010 and 2030. Regarding

real interest rates, Gagnon et al. (2021) find a peak in the real rate between 1975 and 1985

of around 1.7%, and a decline of about 1.5 percentage points by 2030, close to my model’s

predictions. In an empirical study, Johannsen and Mertens (2021) find a decline in the real

rate of about 3/4 percentage points between 1985 and 2015, while Eggertsson et al. (2019)

forecast a larger decline in their model implied interest rate due to demographics of around

3 percentage points between the 1980s and 2030.

5.2 Demographics, Business Cycle Shocks and the ZLB

As shown in the previous section, over the estimation period 1986 to 2019, demographic

changes imply quantitatively relevant declines in growth rates and real and nominal interest

25Decompositions of these contributing factors are presented in the Online Appendix.
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rates. In this section, I study the interaction between demographic changes, business cycle

shocks, and the ZLB using the estimated model.

5.2.1 Holding Demographics Constant from 1986

Here, I examine whether demographic trends were responsible for the Fed Funds rate hitting

the ZLB between 2009 and 2015. To answer this, I hold the demographic profile constant at

its 1986 state, which was the first year that quarterly data is used in the Bayesian estimation,

and construct a counterfactual using the estimated structural shocks. As illustrated in

Panel B of Figure 5, had the population not aged between 1986 and 2015, the significant

recessionary shocks still push the Fed Funds rate to the ZLB in the immediate aftermath

of the Great Recession. However, the period at the lower bound would have lasted about a

year, with liftoff occurring by the start of 2010, and the Fed Funds rate rapidly increasing

thereafter. Absent aging, there would have been greater space for conventional monetary

stimulus afforded by the higher level of the Fed Funds rate. Because of this, the real interest

rate, plotted in Panel C, would have declined by more than observed over 2009.

Panel A shows the effect for output of fixing demographics from 1986. Interestingly, the

counterfactual response shows that output growth would have been lower up to 2007. The

reason for this is that the composition of the workforce in 1986 is skewed towards younger

workers and so demographics were therefore favorable to productivity growth between 1986

and the mid-2000s, as younger cohorts accumulate human capital as they move up the age-

productivity profile. However, from 2011, demographic changes become a drag on total

output growth, and output growth in the counterfactual with demographics fixed at their

1986 state is higher than that observed. As discussed above, demographic trends are forecast

to weigh on growth relative to the observed rate well into the future.
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Figure 4: Macroeconomic Trends Due to Demographics

Notes: The data for the capital-output ratio is extracted from the BLS’s Multifactor Productivity data
published in 2016. The series is the inverse of the ‘output per unit of capital services’ analytic ratio for the
private non-farm business sector (excluding government enterprises).

Figure 5: Output and Interest Rates, Demographics Fixed from 1986

Notes: The solid blue line plots the data and the red dot-dashed line plots the counterfactual.
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5.2.2 Impact of Demographic Trends for the Propagation of Shocks

Next, I examine the nonlinear interactions between the ZLB and the decline in interest rates

induced by demographic changes. In Figure 6, I plot the response of the Fed Funds rate

and output to a large negative investment shock for two demographic cases: one associated

with the structure of the economy that arose in 1990, and the other for the structure of

the economy that arose in 2008 just prior to the period of the binding ZLB. In conducting

this impulse response exercise, I use the reduced-form matrices of the transition equation

(29) corresponding to the years 1990 and 2008. That is, I use {Jk,Qk,Gk}k={1990,2008} to

compute the path of variables following the shock, and initialize the variables at the steady-

state associated with {Jk,Qk,Gk}k={1990,2008} by computing xk={1990,2008} = (I − Qk)
−1Jk

and setting the initial vector of variables to xk.

The initial value of the Fed Funds rate is higher for the demographics structure of the

economy arising in 1990, when the population is younger. For the structure of the economy

associated with demographics in 2008, the shock is large enough to cause the ZLB to bind

for about two years, with output falling by an additional 2 percentage points on impact.

The two responses illustrate how the same shock can have very different implications for the

economy by bringing real and nominal interest rates closer to the ZLB.26

5.2.3 Frequency of ZLB Episodes

The declining Fed Funds rate caused by demographic changes implies that, going forward,

the ZLB is likely to be visited more frequently. To quantitatively assess this, I simulate the

model 500 times for 500 periods under three demographic profiles: first, when they are fixed

at their 1990 profile; second, when they are fixed at their 2008 profile; and third, when they

are fixed to their 2020 profile. In these simulations, the Fed Funds rate is set according to

log(Rt) = max (0,Taylor Rulet), that is, without forward guidance policy. In the first case,

26Due to the time-varying structural changes induced by demographics, there are also small differences
in how shocks propagate which is unrelated to the binding lower bound. I present additional results of such
differences in the Online Appendix.
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when the population is younger and the steady-state interest rate is higher, the ZLB binds

1.4% of the time, while it binds for 5.2% of the time under the 2008 demographic profile,

and 11.7% of the time under the 2020 demographic profile. The duration that the ZLB

binds in these simulations can be longer due to forward guidance policy, discussed in more

detail in the next section. For example, in the data, the Fed Funds rate lifted off in 2015Q4

while in the counterfactual without forward guidance, the Fed Funds rate was above zero for

two quarters in 2011, and lifted off zero from 2013Q2 onwards, giving a counterfactual lower

bound episode of 14 quarters compared to 27 quarters in the data.

One potential policy response would be to raise the inflation target, thereby raising

the steady-state nominal interest rate. In simulations, I find that the annual inflation target

would need to be raised to about 3.5% to obtain approximately the same ex-ante distribution

of expected ZLB episodes in 2008 as would arise under an inflation target of 2% and when

demographics are set to their 1990 level.

5.3 Effect of Forward Guidance

The previous section showed how demographic trends over the past 25 years led to a decline

in real and nominal interest rates, and the ZLB to be a constraint on monetary policy. I

explore in this section how much of a constraint the ZLB was quantitatively by constructing

a counterfactual simulation of the economy in which the Fed acts passively in response to

shocks that drive the policy rate to the ZLB. In this simulation, the expected ZLB duration

adjusts in response to the shock only, so that the policy interest rate is determined by

log(Rt) = max (0,Taylor Rulet). By contrast, in the estimation, I fix the expected ZLB

durations to those observed in survey data. Fixing the durations in this way allows for

the possibility that the Fed extended the ZLB duration beyond the duration implied by

the shocks themselves (see also Campbell et al., 2012; Jones, 2017). The counterfactual

simulation therefore provides a measure of the degree to which the ZLB was a binding

constraint, absent explicit forward guidance policies.
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Figure 7 illustrates the counterfactual path of the economy without forward guidance.

As Panel B shows, when forward guidance is removed, the structural shocks imply that the

Fed Funds rate remains at the ZLB, but lifts off briefly in 2011 and then again in 2013Q2,

earlier than observed, supporting the notion that the Fed Funds rate was held at zero ‘lower

for longer’. When there is no ZLB, the Fed Funds rate would have been lowered to about

-1% from 2009 to 2013, after which it increases and lift-offs the bound by 2014Q3. Panel A

plots the path of output. Absent forward guidance, output would have fallen by, at most, an

additional 5 percentage points by 2011. Panel C shows that the real interest rate would have

been higher by about 2 percentage points between 2009 and 2015, reflecting lower expected

inflation without the extra monetary stimulus.

Next, I compute the ZLB durations implied by the shocks alone, which provides a mea-

sure of how stimulatory forward guidance is.27 I find some degree of forward guidance

stimulus every quarter between 2009 and 2015, with the strongest stimulus between 2011Q3

and 2013Q2, when the forward guidance component of the total duration is estimated to be

between 8 and 11 quarters at the mode of the posterior distribution. This period corresponds

to low yields on long-term Treasuries and the explicit calendar-based targets announced by

the Fed. These results are also consistent with the findings in Swanson and Williams (2014),

who show that between 2009 and 2011, long-term yields were relatively unconstrained, and

that after 2011, long-term yields tightened significantly towards their lower bounds; consis-

tent with the Fed announcing expansive unconventional monetary policies. In particular, in

mid-2011, the Fed announced its “to mid-2013” guidance announcement, the first of many

subsequent calendar-based extensions of the lower bound regime.28

27I calculate the ZLB durations implied by the structural shocks, using a method described in Jones (2017).
The difference between those computed endogenous durations and the durations used in the estimation is
the contribution of forward guidance, or the extension of the ZLB regime that, together with the structural
shocks, will generate the observed series, as discussed in Jones et al. (2021). The decomposed ZLB durations
are plotted in the Online Appendix.

28For example, in the FOMC press release, August 9 2011, the FOMC announced: “The Committee
currently anticipates that economic conditions – including low rates of resource utilization and a subdued
outlook for inflation over the medium run – are likely to warrant exceptionally low levels for the federal
funds rate at least through mid-2013.”
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Figure 6: Impulse Response, Shock to the Efficiency of Investment

Figure 7: Output and Interest Rates, No Forward Guidance

Notes: The solid blue line plots the data and the red dot-dashed line plots the counterfactual.
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5.4 Decomposition of Output Since the Great Recession

In this section, I put the results from the previous sections together to study how the model

decomposes the decline in log output relative to its long-run linear trend. The left panel

of Figure 8 plots, in the solid line, the difference between output and its long-run trend

relative to 2007. The long-run trend is computed using the average growth rate from 1986

to 2007. The data show the severity of the slowdown in output, with the gap between the

data and its trend widening between 2007 and 2019 to 14%. Demographics alone account

for two-fifths, or 6 percentage points, of the gap by the end of 2019. Without expansionary

forward guidance policy, the gap would have been up to 5 percentage points larger, primarily

between 2011 and 2013.

The nonlinearities associated with the ZLB and forward guidance policy means that there

is no linear decomposition of the remaining gap between output and its demographic path

into the contribution of individual shocks.29 For this reason, I explore how each estimated

shock affects output when the ZLB constraint is turned off. The right panel of Figure 8 plots

the path of output relative to 2007 in counterfactuals that are computed in the following way.

First, I compute counterfactual paths of output when each shock is set to zero, respectively,

and the Fed Funds rate responds endogenously and can fall below zero. I then evaluate

the contribution of each shock as the difference between the observed output series and the

counterfactual output series relative to 2007.

The results suggest that investment efficiency shocks explain why output collapsed in

2009 and recovers slowly through to 2015. These shocks, as emphasized by Justiniano et

al. (2011), capture disruptions in the intermediation between savings and investment. They

therefore capture the impact that financial factors have on aggregate variables which, as

shown by Jermann and Quadrini (2012) and Del Negro et al. (2015), are key to explaining

the decline in output around 2008-09.30 The results also show that government spending

29The time-series of shocks are shown in the Online Appendix.
30As discussed above, the shocks to the efficiency of investment – shocks to κt in (5) – correlate with the

spread between the yields of Baa Corporate debt and 10 year Treasury bonds, and spike at the same time
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shocks kept output from falling even further between mid-2009 and 2012. Discount factor

shocks have a small effect on output when monetary policy is unconstrained and able to

respond. This observation is consistent with the variance decompositions of Table 2, where

preference shocks explain more than a third of the unconditional forecast error variance of the

Fed Funds rate, but small fractions of the variance of output, consumption, and investment.

Finally, the right panel of Figure 8 shows that price markup shocks also imply a fall in

output in years of the Great Recession and can explain the remaining persistent drop in

output through to 2020. As discussed above in section 4.2.2, shocks to markups can capture

supply-side factors or other unmodeled trends that depress output. These unmodeled forces

could include, for example: firm entry dynamics where, as Gutierrez et al. (2021) show,

positive shocks to firm entry costs since the 2000s can explain depressed investment, higher

concentration, and lower real interest rates; or a rise in idiosyncratic income risk which could

bring down interest rates and output through a stronger precautionary demand for savings

when interest rates are near the ZLB (Auclert and Rognlie, 2018; Aladangady et al., 2021).

5.5 Robustness

I conduct a number of experiments to verify that the aggregate trend predictions from the

model under expected demographic changes are robust to alternative specifications. The

results of each experiment are presented in the Online Appendix but discussed briefly here.

Borrowing Constraints I first check that the model’s predictions hold when individuals

face a constraint restricting their borrowing early in life. With borrowing constraints, there

are more savings, pushing up the capital-output ratio. As a consequence, the real interest

rate is lower than in the baseline model. The magnitude of the fluctuations of the real interest

rate, the participation rate and output growth are very similar to the baseline model.

as the spike in the spread in 2008, as I show in the Online Appendix.
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Time-Varying Productivity Profile The second robustness check is to adopt time-

varying productivity profiles to account for a possible flattening of productivity profiles over

time. Such a flattening can affect the accumulation of human capital and can impact aggre-

gate productivity measures in two ways: first, by a growth effect, by lowering the potential

for new workers to accumulate human capital, and second, by a level effect, by affecting the

productivity level that individuals enter the workforce on. I calibrate the age-productivity

profiles by recomputing for each cross-sectional sample, the profile and then interpolating

between those points in time. The overall pattern of aggregate labor productivity is much

the same as the baseline model, although the magnitude of the amplitude of the change

in labor productivity growth is smaller, with demographics contributing the most to labor

productivity growth in 1980 rather than in 1990 (as is the case in the baseline results).

Female Labor Force Participation and Multiple Skill Types From 1985 on, the

baseline predictions for the participation rate, aggregate labor productivity growth and the

real interest rate are largely unaffected when the age-productivity and labor disutility profiles

are calibrated to match female age-earnings profiles and female labor force participation rates

from the 1940s to 1990s, after which female labor force participation is roughly constant.

As a final point of comparison, I verify that the directions of the aggregate predictions are

robust to a calibration where an additional source of heterogeneity is modeled–where there

are two types of workers, low or high skilled, with low skill workers calibrated to those with

less than college education.

Unanticipated Demographic Changes Demographic changes are assumed to be per-

fectly foreseen in the baseline analysis, as is common in the literature. As explained in

Section 3.2, the assumption of perfect foresight also significantly aids the construction of the

model’s likelihood function, making Bayesian estimation feasible. We can also construct the

demographics-induced trends in the model under the assumption that demographic changes

arrive as a surprise every quarter. I plot in the Online Appendix the real interest rate and
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the growth rate of output under this assumption. Compared to the baseline results, the

paths of the real interest rate and output are similar, with somewhat smaller fluctuations in

the real interest rate. The anticipation of demographic changes generates larger swings in

labor supply and savings behavior which influences the path of the interest rate.

6 Conclusions

This paper studies why the level of US output remains significantly below its pre-crisis trend

after the Great recession. I use a New Keynesian model with demographic shocks and the

ZLB to show that declining mortality rates and changes to the age population composition

can generate long-run trends that match the low frequency movement of output growth,

productivity, the real interest rate, and the employment-population ratio.

I estimate the model using Bayesian likelihood methods. With the estimated model, I

find that the ZLB would not have been a binding constraint between 2010 and 2015 had

demographics not changed from 1986. I find that demographic shocks alone are responsible

for about 40% of the decline in output relative to its pre-crisis trend by 2019. Furthermore,

my results suggest that absent any forward guidance policy used by the Fed, the ZLB would

have caused output to fall by an additional 2 to 5 percentage points between 2011 and 2013.

I also assess the contribution of each of the estimated shocks to the decline in output

since the Great Recession, and find an important role for investment shocks in causing

output to fall. These shocks proxy for financial disturbances as they capture disruptions in

the intermediation between savings and investment.

The results illustrate the importance of demographics as a major driver of macroeconomic

trends over time. Further research could focus on how demographic trends interact with the

housing market or with the efficacy of fiscal policy. It would also be interesting to model a

more detailed financial sector to study the interactions between demographic changes and

financial frictions, particularly as borrowing constraints may bind differently across cohorts.
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Figure 8: Log Output Relative to Trend (2007=0)

A. Demographics and Forward Guidance B. Contribution of Shocks
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