
Extracting Rational Expectations Model Structural Matrices from Dynare

Callum Jones∗

New York University

In these notes I discuss how to extract the structural matrices of a model from its Dynare

implementation. This can be useful for many applications. I illustrate one example here –

implementing a ZLB algorithm. The ZLB algorithm is described in detail in ‘Unanticipated

Shocks and Forward Guidance at the Zero Lower Bound.’

Contents

1 Linear rational expectations model 1

2 Dynare 2

3 The dyn to str function 2

4 Illustrating with ZLB algorithm 3

4.1 The algorithm . 3

4.2 Details of each step . 4

4.3 Code implementing method . 5

1 Linear rational expectations model

Consider a rational expectations model xt = Ψ(xt−1,Etxt+1,wt). Linearize the model around a
non-stochastic steady state to get:

Axt = Bxt−1 +DEtxt+1 +Ewt . (1)

The constant is included in xt but can be written separately. In an economy where all agents know
the regime and expectations are formed under that regime, the solution is a reduced-form VAR:

xt = Fxt−1 +Gwt .

∗Department of Economics, New York University. Email: callum.jones@nyu.edu. All remaining errors are
mine. Date: January 26, 2016.

1

where F and G are conformable matrices which are functions of the structural matrices A, B, D
and E. As in Binder and Peseran (1995), F is solved from the quadratic expression:

F = [A−DF]−1 B.

With F in hand, we compute G = [A−DF]−1 E. The reduced form can be found by other solution
concepts like the method of Sims (2002).

2 Dynare

In Dynare .mod files, a model’s structural equations are written explicitly. For example, consider
a three equation New Keynesian model with the following structural equations:

x̂t = Et x̂t+1− (r̂t−Et π̂t+1)

π̂t = βEt π̂t+1 +ψ x̂t

r̂t = r̂t−1 +ρπ π̂t +ρgĝt +ρxx̂t .

The linear equations block of the Dynare .mod file reads:

model (linear) ;

x = x(+1) - (r - pi(+1)) ;

pi = beta * pi(+1) + psi * x ;

r = r(-1) + rho_pi * pi + rho_g * g + rho_x * x ;

end ;

Dynare outputs F and G and stores the result in the structure M (see my Dynare notes for more
details). However, it does not give the structural matrices A, B, D and E directly. In many cases it
is useful to have these in hand.

3 The dyn to str function

We have to rebuild the structural matrices from the Dynare output. In particular, we use the Jaco-
bian outputted by Dynare. Why the Jacobian? From the Dynare manual:

When computing the Jacobian of the dynamic model, the order of the endogenous
variables in the columns is stored in M .lead lag incidence. The rows of this matrix
represent time periods: the first row denotes a lagged (time t-1) variable, the second
row a contemporaneous (time t) variable, and the third row a leaded (time t+1) vari-
able. The columns of the matrix represent the endogenous variables in their order of

2

declaration. A zero in the matrix means that this endogenous does not appear in the
model in this time period. The value in the M .lead lag incidence matrix corresponds
to the column of that variable in the Jacobian of the dynamic model. Example: Let
the second declared variable be c and the (3,2) entry of M .lead lag incidence be 15.
Then the 15th column of the Jacobian is the derivative with respect to c(+1).

The function dyn to str also computes the reduced form matrices from the extracted struc-
tural matrices. They should be the same as the Matlab solution. Comparing the reduced form
matrices of dyn to str and the Dynare reduced form matrices:

F(:,oo_.dr.state_var) is equivalent to oo_.dr.ghx(oo_.dr.inv_order_var,:)

G is equivalent to G2 where

- G2=oo_.dr.ghu*sqrt(M_.Sigma_e) ;

- G2(oo_.dr.inv_order_var,:) ;

4 Illustrating with ZLB algorithm

I show here why it is useful to have the structural matrices in an example application to the ZLB. It
is taken from the paper ‘Unanticipated Shocks and Forward Guidance at the Zero Lower Bound’,
available at my website wp.nyu.edu/callum.

4.1 The algorithm

The steps of the algorithm are:

0. Linearize the model around the non-stochastic steady state, ignoring the ZLB.

1. For each period t:

(a) Solve for the path {xτ}T
τ=t with T large, using the solution of the linearized economy

from step (0), given wt and the initial vector of variables xt−1, and assuming no future
uncertainty. This gives a path for the nominal interest rate, ikt = {ikτ}T

τ=t .

(b) Examine the path ikt . If ikt ≥ 0, then the ZLB does not bind, and move to step (2). If
ikt < 0, then move to step (1c).

(c) For the first time period where ikt < 0, set the nominal interest rate in that period to
zero. This changes the anticipated structure of the economy. Under this new structure,
calculate the path of all variables, including the new path for the nominal interest rate
ik+1
t = {ik+1

τ }T
τ=t .

Iterate on steps 2 and 3 until convergence of ik+1
t and ikt .

2. Increment t. The initial vector of variables becomes xt , which was solved for in step 1. Draw
a new vector of unanticipated shocks wt+1 and return to step 1.

3

wp.nyu.edu/callum

4.2 Details of each step

At the following steps:

0. Write the n equations of the linearized structural model at t as:

Axt = C+Bxt−1 +DEtxt+1 +Ewt , (SM)

where xt is a n× 1 vector of state and jump variables and wt is a l× 1 vector of exogenous
variables. Use standard methods to obtain the reduced form:

xt = J+Fxt−1 +Gwt . (RF)

1. For each period t:

(a) Using (RF), obtain the path {xτ}T
τ=t given wt . Set T to be large. Assume {wτ}T

τ=t+1 = 0
(no future uncertainty), so that:

xt = J+Fxt−1 +Gwt

xt+1 = J+Fxt

...

xT = J+FxT−1

This step gives a path it = {iτ}T
τ=t .

(b) Examine the path {iτ}T
τ=t

• if iτ ≥ 0 for all t ≤ τ < T , accept {xτ}T
τ=t . The it path does not violate ZLB today

or in future.

• if iτ < 0 for any t ≤ τ < T , move to step (1c).

(c) Update the path of {iτ}T
τ=t for the ZLB. For the first time period t∗ where it∗ < 0, set

it∗ = 0. The model system at t∗ therefore becomes:

A∗xt∗ = C∗+B∗xt∗−1 +D∗Et∗xt∗+1 +E∗wt∗,

Compute the new path {iτ}T
τ=t . This involves computing {xτ}t

∗

τ=t and {xτ}T
τ=t∗+1. At

t∗, Et∗xt∗+1 is computed using the the reduced form solution (RF) and wt∗+1 = 0. This
expresses xt∗ as a function of xt∗−1. Proceeding in this way with the correct structural
matrices (either ZLB ∗ or no ZLB at each time period), compute the path {iτ}T

τ=t .

A convenient way to compute the new path {iτ}T
τ=t is to form the time varying matrices

4

{Jτ ,Fτ ,Gτ}T
τ=t which satisfy the recursion:

Ft = [At−DtFt+1]
−1 Bt

Jt = [At−DtFt+1]
−1 (Ct +DtJt+1)

Gt = [At−DtFt+1]
−1 Et ,

with the final set of reduced form matrices for the recursion being the non-ZLB matrices
J, F, G from (RF).

These time-varying matrices are then used to compute the path by calculating xτ =

Jτ + Fτxτ−1 + Gτwτ . For more details on this particular recursion, see Kulish and
Pagan (2012).

4.3 Code implementing method

The first thing to do is run Dynare on the model without the ZLB.

model_name = ’modelQ’ ;

eval([’dynare ’, model_name, ’.mod noclearall’]) ;

Next, extract the structural matrices using dyn to str and store the output in the structure SET.

dyn_in.M_ = M_ ;

dyn_in.oo_ = oo_ ;

out = dyn_to_str(dyn_in) ;

SET.mats.Q = out.mats.Q ; Q = SET.mats.Q ;

SET.mats.G = out.mats.G ; G = SET.mats.G ;

SET.str_mats.A = out.mats.A ;

SET.str_mats.B = out.mats.B ;

SET.str_mats.D = out.mats.D ;

SET.str_mats.E = out.mats.E ;

SET.str_mats.D2 = out.mats.D2 ;

SET.str_mats.Gamma = out.mats.Gamma ;

Next, we need to create the starred structural matrices corresponding to the ZLB regime. The first
set of code sets the ZLB algorithm’s parameters.

SET.pos_of_i = SET.variable.i ; % Position of interest rate in .mod

SET.tr_row = 9 ; % Row of policy rule in .mod

5

SET.maxchk = 200 ; % Check ZLB binding out 200 periods

SET.stoch = 1 ; % Shocks each period? For IRF, same as 0

SET.zlb_val = -log(M_.params(SET.param_names.RSS)) ; % i at ZLB

Next, we construct the starred matrices by manipulating the equation corresponding to the Taylor
rule.

mat_i_f_zlb = SET.str_mats ;

mat_i_f_zlb.A(SET.tr_row,:) = 0 ;

mat_i_f_zlb.B(SET.tr_row,:) = 0 ;

mat_i_f_zlb.D(SET.tr_row,:) = 0 ;

mat_i_f_zlb.A(SET.tr_row,SET.pos_of_i) = 1 ;

mat_i_f_zlb.A(SET.tr_row,end) = -SET.zlb_val ; % Constant

Then we store the ZLB starred and no-ZLB non-starred regimes in SET for useful input into the
ZLB function.

SET.mat_init = SET.str_mats ; % Structural matrices not at ZLB

SET.mat_i_f_zlb = mat_i_f_zlb ; % Structural matrices at ZLB

SET.mat_fin = SET.str_mats ; % Structural matrices after ZLB

In running the ZLB algorithm, we simply initialize the first period vector of endogenous vari-
ables to the steady-state values, sample some shocks and compute the path given those shocks.

for t = 2:SET.horizon

[y_zlb(:,t), zlb_f(t), z_f_T(t)] = zlb(SET, y_zlb(:,t-1), et(:,t)) ;

end

The inputs to the zlb function include last period’s state vector, the vector of shocks and the
SET structure, which contains the structural matrices computed above.Figure 1 plots output of the
method for endogenous variables across demand shocks.

A description of zlb is left to a complementary set of notes, but the details here illustrate how
the structural matrices can be used in practice.

6

−5 0 5
−0.2

−0.1

0

0.1

Size of ε
ξ,t

 shock

Initial response of π
t

−5 0 5
−0.02

0

0.02

0.04

Size of ε
ξ,t

 shock

Initial response of i
t

−5 0 5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Size of ε
ξ,t

 shock

Initial response of y
t

−5 0 5

0

2

4

6

8

10

Size of ε
ξ,t

 shock

Initial ZLB duration

Figure 1: Initial values of variables across the size of the demand shock

7

	Linear rational expectations model
	Dynare
	The dyn_to_str function
	Illustrating with ZLB algorithm
	The algorithm
	Details of each step
	Code implementing method

