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A An Old Keynesian Model

In this appendix, we present a slightly modified version of the model used by Taylor (1999)

and discussed in Cochrane (2011). We show that model delivers a reduce form like the one

analyzed in Section ??. The model specifies a NAIRU-type Phillips curve, where the growth

rate of inflation holds a negative linear relationship with the difference between the current

unemployment rate and a constant level (known as the natural rate of unemployment). Thus,

we write

πt − πt−1 = −γ (ut−1 − u)− ε(ut − u) + eπt ,

where πt is the inflation rate; ut is the unemployment rate; γ, u, and ε are positive parameters,

and eπt is a shock. This is the same equation used by Taylor (1999), except that he assumes

ε = 0.1 This assumption implies that the policy rate has no immediate effect on the inflation

rate. By letting ε > 0, albeit it is small, we allow for that immediate effect.

∗The views expressed herein are those of the authors and not necessarily those of the Board of Governors
of the Federal Reserve System, the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
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1Taylor’s model is expressed in terms of output deviations instead of unemployment deviations. Our
specification implies a negative linear relationship between output deviations and unemployment deviations.
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The second equation establishes a negative linear relationship between unemployment

and the difference between the policy interest rate and the inflation rate, so we write

ut = σ(it − πt − r) + eut ,

where σ, r are positive parameters and eut is a shock.2

In what follows, we interpret the unemployment rate as deviations from its steady state

level u, or, equivalently, we set u = 0.

Using the second in the first, we have

πt = πt−1 − γut−1 − ε (σ(it − πt − r) + eut ) + eπt

or

πt =
πt−1 − γut−1 + σεr − σεit − εeut + eπt

(1− εσ)
,

whereas using the first in the second, we have

ut(1− εσ) = σ(it − πt−1 + γut−1 − eπt − r) + eut

ut = − σ

(1− σε)
πt−1 +

σγ

(1− σε)
ut−1 +

σit − σr − σeπt + eut
(1− σε)

.

Thus, we can write the system as[
πt

ut

]
=

[
1

(1−εσ) − γ
(1−εσ)

− σ
(1−σε)

σγ
(1−σε)

][
πt−1

ut−1

]
+

[
− σε

(1−εσ)
σ

(1−εσ)

]
(it − r) +[

− ε
(1−εσ)

1
(1−εσ)

1
(1−σε) − σ

(1−σε)

][
eut

eπt

]
.

Recall that we had assumed that ε > 0, albeit it is small. Thus, the coefficient of unem-

ployment in the inflation equation is close to −γ, which is the slope of the NAIRU Phillips

curve.

2To the extent that the term in parentheses on the right-hand side of this equation aims at capturing
movements in the real interest rate as deviations from r (presumably its steady state value), the fact that πt

rather than Etπt+1 is in this equation may appear surprising. However, as we show below, this equation—
with a reinterpretation of the parameters—will arise exactly as the solution in any case, as long as ε is zero.
Given the lack of microfoundations, this reinterpretation seems innocuous to us.
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A.1 The Interest Rate Rule

If we assume, as Taylor (1999) and Cochrane (2011) do, that

it = r + ϕππt + ϕyyt,

then the solution is[
πt

ut

]
=

[
(1+σϕu)

(1+σϕu)+σ(ϕπ−1)ε
− (1+σϕu)

(1+σϕu)+σ(ϕπ−1)ε
γ

σ(ϕπ−1)
(1+σϕu)+σ(ϕπ−1)ε

− σ(ϕπ−1)
(1+σϕu)+σ(ϕπ−1)ε

γ

][
πt−1

ut−1

]
+

1

(1 + σϕu) + σ(ϕπ − 1)ε

[
−ε 1

1 σ(ϕπ − 1)

][
eut

eπt

]
.

The two roots are given by

λ1λ2 = 0

λ1 + λ2 =
(1 + σϕu)− (ϕπ − 1)σγ

(1 + σϕu) + σ(ϕπ − 1)ε
,

so one root is zero, and the other is given by

(1 + σϕu)− (ϕπ − 1)σγ

(1 + σϕu) + σ(ϕπ − 1)ε
,

which is less than one as long as ϕπ > 1, as described in Taylor (1999). Therefore, the system

has a unique bounded solution.

A.2 Characterizing the Optimal Policy Rule

Recall that the solution is given by[
πt

ut

]
=

[
1

(1−εσ) − γ
(1−εσ)

− σ
(1−σε)

σγ
(1−σε)

][
πt−1

ut−1

]
+

[
− σε

(1−εσ)
σ

(1−εσ)

]
(it − r) +[

− ε
(1−εσ)

1
(1−εσ)

1
(1−σε) − σ

(1−σε)

][
eut

eπt

]
,

so, in the notation of the paper,

πt+1 = a+ bπt + cut + dit + ξπt ,
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so

b =
1

(1− εσ)
, c = − γ

(1− εσ)
, d = − σε

(1− εσ)
,

and the optimal policy is

iOptt =
1

d

[
π∗
t+1 −

(
a+ bπt + cut + Etξ

π
t+1

)]
,

so

iOptt =
1

− σε
(1−εσ)

[
π∗
t+1 −

(
a+

1

(1− εσ)
πt +− γ

(1− εσ)
ut + Etξ

π
t+1

)]
or

iOptt =

[
−(1− εσ)

σε
π∗
t+1 +

(1− εσ)

σε
a+

1

σε
πt −

γ

σε
ut − Etξ

π
t+1

]
.

Thus, as long as σε < 1, which will hold for small values of ε, the conditions for a unique

stable solution are satisfied.

A.3 The Reduced Form Parameter versus the Structural Form

Parameter

The solution of the model is given by[
πt

ut

]
=

[
(1+σϕu)

(1+σϕu)+σ(ϕπ−1)ε
− (1+σϕu)

(1+σϕu)+σ(ϕπ−1)ε
γ

σ(ϕπ−1)
(1+σϕu)+σ(ϕπ−1)ε

− σ(ϕπ−1)
(1+σϕu)+σ(ϕπ−1)ε

γ

][
πt−1

ut−1

]
+

1

(1 + σϕu) + σ(ϕπ − 1)ε

[
−ε 1

1 σ(ϕπ − 1)

][
eut

eπt

]
,

so we can write the solution for inflation as

πt =
(1 + σϕu)

(1 + σϕu) + σ(ϕπ − 1)ε
πt−1 −

(1 + σϕu)

(1 + σϕu) + σ(ϕπ − 1)ε
γut−1 +

eπt − εeut
(1 + σϕu) + σ(ϕπ − 1)ε

.

Thus, the reduced form parameter γ̂ is equal to

γ̂ =
(1 + σϕu)

(1 + σϕu) + σ(ϕπ − 1)ε
γ =

1

1 + εσ(ϕπ−1)
(1+σϕu)

γ,

so it is lower than the structural parameter γ but arbitrarily close when ε is close to zero.
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B Regression Specifications

In this section, we present more details on the empirical specifications presented in Section

??. In Section B.1, we provide the list of variables that are used as controls in Table ?? and

their sources. In Section B.2, we present the regressions models we adopt in the main text.

Section B.3 shows additional results in the reduced form analysis.

B.1 Control Variables

• rgdp: state-level real GDP growth relative to national average in the same period,

trend term of HP filtered series with smoothing parameter 400. Source: Bureau of

Economic Analysis (BEA) https://apps.bea.gov/regional/downloadzip.cfm, all

MSAs since 1960.

• temp: MSA-level temperature relative to regional average in 1960 and 2018.

Source: National Centers for Environmental Information (NCEI), https://www.ncdc.

noaa.gov/cag/, all MSAs since 1960, except for Kansas City since 1972 and Honolulu

since 1965.

• prec: MSA-level precipitation relative to regional average in 1960 and 2018.

Source of variable prec is the same as temp.

• infExp: division-level inflation expectation relative to national average in the same

period. Source: Survey of Consumers from the University of Michigan, https://data.

sca.isr.umich.edu/sda-public/cgi-bin/hsda?harcsda+sca, all divisions since 1978.

• bartik : interaction of regional exposure variable (combining regional industrial em-

ployment composition and government expenditure shipment by industry ) with a

measure of the growth rate of real aggregate federal government consumption.

Source: constructed following McLeay and Tenreyro (2020).

The variable x in region i in period t is denoted by xit, we further define its cross-sectional

deviation from US average ∆xit and its deviation from 1960–2018 regional average ∆Rxit as

∆xit = xit −XUS
t

∆Rxit = xit −
1

N

2018∑
t=1960

xit
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B.2 Regression Specifications

• We specify the OLS regression models without controls in the following form:

πit+1 = b∆uit + c∆πit +
∑
s

I{t = s}αs.

• For the 2SLS without control regression models, we use ∆uit−1 as instruments for the

first stage.

• For the regression models with controls (both OLS and 2SLS), we extend the models

without controls to include ∆Rtempit, ∆
Rprecit, ∆infExpit, ∆u

i
t−2, ∆π

i
t−1, ∆π

i
t−2, and

bartikt as explanatory variables. However, we can use the Bartik starting in 1990

only, owing to the availability of data. We show that when adding this control to the

sub-samples from 1990 onwards, the results do not change for headline or core inflation.

B.3 Full Reduced Form Results

In this subsection, we present a complete set of results corresponding to the regression

analysis of Section ??. First, we show the estimated value for the time dummy, which

corresponds to the estimate of the inflation target. We report the results using both core

and headline inflation in Figure B.1.

Figure B.1: Model Estimation of Inflation Target
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In Tables 7 to 9, we report complete results for the regressions using headline inflation,

including OLS and 2SLS, with and without controls. We also show, in Table 10, results

including the Bartik variable as a control, which we have only since the late 80s. As we

show, the results barely change when including that additional control for the period in

which we have data. We report only the case of 2SLS with controls, but the results are also

robust for the other specifications and also when we use core inflation rather than headline.

We then present the results for OLS and 2SLS with and without controls when using core

in tables 11 to 13.

Table B.1: Headline without Controls

Model Coefficient 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018 1977-2018

OLS

c -0.31** -0.41** -0.31** -0.24** -0.21** -0.28** -0.28**
(0.11) (0.11) (0.05) ( 0.06) (0.07) (0.03) (0.04)

b -0.17** 0.00 0.21** 0.05 0.04 0.22** 0.10**
(0.06) (0.06) (0.06) ( 0.06) (0.07) (0.04) (0.05)

Overall R2 0.83 0.69 0.45 0.70 0.51 0.72 0.88

2SLS

c -0.39** -0.29* -0.46** -0.21** -0.24** -0.24** -0.27**
(0.12) (0.15) (0.13) ( 0.08) (0.08) (0.03) (0.04)

b -0.18** 0.05 0.14 0.06 0.03 0.24** 0.10**
(0.06) (0.09) (0.09) ( 0.06) (0.07) (0.05) (0.05)

Overall R2 0.79 0.71 0.39 0.70 0.51 0.74 0.88

Observations 377 288 492 536 362 1678 2055

* significant at 5% level, ** significant at 1% level

C Data

C.1 Description of Data for Reduced Form Exercises

This appendix describes our data sources and calculations for the reduced form exercises.

We analyze semiannual CPI inflation and unemployment data for the United States and for

27 metropolitan statistical areas (MSAs). All semiannual data for unemployment and CPI

price indices are computed as the arithmetic average of monthly data for the first and second

half of each year. Inflation and price data for MSAs are available only as non seasonally

adjusted, so all the data are not seasonally adjusted.
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Table B.2: Headline OLS with Controls

Coefficient 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018 1977-2018

c -0.19 -0.43** -0.14* -0.26** -0.17 -0.28** -0.27**
(0.18) (0.09) (0.07) (0.07) ( 0.10) (0.04) (0.07)

b -0.30** -0.01 0.19** 0.06 0.02 0.23** 0.08
(0.10) (0.08) (0.06) (0.06) ( 0.07) (0.04) (0.04)

e(infExp) -0.30** -0.01 0.19** 0.06 0.02 0.23** 0.08
(0.10) (0.08) (0.06) ( 0.06) (0.07) (0.04) (0.04)

e(prec) -0.20 0.00 0.03 -0.01 0.07* 0.05 0.00
(0.13) (0.06) (0.04) ( 0.05) (0.03) (0.03) (0.03)

e(temp) 0.19** 0.01 -0.02 -0.09* 0.07 0.00 0.00
(0.07) (0.06) (0.03) ( 0.04) (0.04) (0.01) (0.02)

e(u(−1)) -0.21 -0.02 -0.27* -0.02 -0.10 -0.07 -0.06
(0.15) (0.12) (0.12) ( 0.09) (0.11) (0.05) (0.06)

e(u(−2)) -0.04 0.02 0.09 0.03 0.12 0.12* 0.08
(0.15) (0.07) (0.11) ( 0.12) (0.08) (0.05) (0.05)

e(π(−1)) -0.22* -0.23** 0.06 -0.09 -0.03 0.03 0.05
(0.11) (0.08) (0.05) ( 0.06) (0.06) (0.03) (0.04)

e(π(−2)) -0.23** -0.11 -0.09 -0.02 0.09 -0.01 0.00
(0.06) (0.08) (0.05) ( 0.06) (0.06) (0.03) (0.02)

Overall R2 0.80 0.64 0.46 0.70 0.54 0.73 0.88

Observations 327 288 484 532 362 1666 1993

* significant at 5% level, ** significant at 1% level
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Table B.3: Headline 2SLS with Controls

Coefficient 1977-1984 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018 1977-2018

c -0.50** -0.45** -0.45** -0.28** -0.28* -0.35** -0.33**
(0.19) (0.14) (0.10) (0.10) ( 0.13) (0.05) (0.05)

b -0.29** -0.02 0.14 0.06 0.01 0.22** 0.08
(0.09) (0.09) (0.08) (0.06) ( 0.08) (0.04) (0.04)

e(infExp) -0.04 -0.07 0.17 0.11 0.08 0.16 -0.13
(0.33) (0.18) (0.17) ( 0.25) (0.23) (0.11) (0.15)

e(prec) -0.20 0.00 0.04 -0.01 0.08** 0.05 0.00
(0.13) (0.06) (0.04) ( 0.05) (0.03) (0.03) (0.03)

e(temp) 0.20** 0.01 -0.02 -0.09* 0.08* 0.00 0.00
(0.08) (0.06) (0.03) ( 0.04) (0.03) (0.01) (0.02)

e(u(−2)) -0.06 0.02 0.00 0.02 0.09 0.10** 0.07
(0.14) (0.06) (0.10) ( 0.11) (0.07) (0.04) (0.04)

e(π(−1)) -0.20* -0.22** 0.07 -0.09 -0.03 0.03 0.05
(0.10) (0.08) (0.06) ( 0.06) (0.06) (0.03) (0.04)

e(π(−2)) -0.21** -0.10 -0.09 -0.02 0.09 -0.01 0.00
(0.07) (0.08) (0.05) ( 0.05) (0.06) (0.03) (0.02)

Overall R2 0.76 0.65 0.40 0.70 0.54 0.74 0.88

Observations 327 288 484 532 362 1666 1993

* significant at 5% level, ** significant at 1% level
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Table B.4: Headline 2SLS with Controls Including Bartik Variable

Coefficient 1991-2000 2001-2010 2011-2018 1985-2018

c -0.47** -0.29** -0.28* -0.36**
(0.11) (0.10) ( 0.13) (0.06)

b 0.17* 0.06 0.00 0.20**
(0.08) (0.06) ( 0.08) (0.04)

e(infExp) 0.13 0.11 0.09 0.14
(0.16) ( 0.25) (0.24) (0.11)

e(prec) 0.06 -0.01 0.07** 0.04
(0.03) ( 0.05) (0.03) (0.03)

e(temp) -0.02 -0.09* 0.07* 0.00
(0.03) ( 0.05) (0.03) (0.01)

e(bartik) -1.09 3.59 2.41 -0.37
(5.60) ( 5.52) (2.98) (2.87)

e(u(−2)) 0.04 0.02 0.09 0.11*
(0.09) ( 0.11) (0.07) (0.05)

e(π(−1)) 0.07 -0.10 -0.03 0.02
(0.05) ( 0.06) (0.06) (0.04)

e(π(−2)) -0.06 -0.02 0.09 0.01
(0.05) ( 0.05) (0.06) (0.02)

Overall R2 0.55 0.69 0.54 0.70

Observations 532 532 362 1426

* significant at 5% level, ** significant at 1% level

Table B.5: Core – without Controls

Model Coefficient 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018

OLS

c -0.47** -0.33** -0.34** -0.29** -0.32**
(0.10) (0.05) (0.07) ( 0.09) (0.04)

b 0.09 0.23** 0.10 0.06 0.26**
(0.06) (0.08) (0.06) ( 0.08) (0.04)

Overall R2 0.41 0.36 0.34 0.10 0.61

2SLS

c -0.34** -0.41** -0.25** -0.27** -0.24**
(0.15) (0.13) ( 0.08) (0.10) (0.04)

b 0.13 0.20 0.12* 0.07 0.30**
(0.11) (0.10) (0.06) ( 0.07) (0.04)

Overall R2 0.42 0.34 0.36 0.13 0.63

Observations 288 492 536 362 1678

* significant at 5% level, ** significant at 1% level
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Table B.6: Core OLS with Controls

Coefficient 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018

c -0.44** -0.21* -0.37** -0.30** -0.36**
(0.09) (0.08) (0.07) (0.11) ( 0.05)

b 0.10 0.21** 0.12* 0.03 0.26**
(0.09) (0.08) (0.06) (0.07) ( 0.03)

e(infExp) 0.08 0.12 0.11 0.26 0.17
(0.22) (0.17) (0.30) ( 0.29) (0.12)

e(prec) 0.00 0.02 0.03 0.07 0.05*
(0.07) (0.04) (0.04) ( 0.05) (0.02)

e(temp) 0.03 -0.06 -0.08 0.00 -0.03*
(0.06) (0.04) (0.05) ( 0.05) (0.01)

e(u(−1)) -0.10 -0.22 0.00 0.01 -0.06
(0.10) (0.15) (0.11) ( 0.12) (0.07)

e(u(−2)) 0.13 0.14 0.04 0.04 0.16**
(0.10) (0.13) (0.14) ( 0.11) (0.05)

e(π(−1)) -0.17 -0.09* -0.07 0.07 0.06*
(0.09) (0.04) (0.06) ( 0.08) (0.03)

e(π(−2)) -0.08 -0.07 -0.10 0.01 -0.03
(0.08) (0.05) (0.06) ( 0.07) (0.02)

Overall R2 0.37 0.41 0.34 0.13 0.63

Observations 260 484 532 362 1638

* significant at 5% level, ** significant at 1% level
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Table B.7: Core 2SLS with Controls

Coefficient 1985-1990 1991-2000 2001-2010 2011-2018 1985-2018

c -0.57** -0.46** -0.37** -0.29 -0.41**
(0.15) (0.12) (0.13) (0.16) ( 0.06)

b 0.08 0.18* 0.12* 0.04 0.25**
(0.09) (0.08) (0.06) (0.07) ( 0.03)

e(infExp) 0.03 0.13 0.11 0.27 0.16
(0.19) (0.17) (0.30) ( 0.29) (0.13)

e(prec) 0.00 0.03 0.03 0.07 0.06*
(0.07) (0.04) (0.04) ( 0.05) (0.02)

e(temp) 0.04 -0.06 -0.08 0.00 -0.03*
(0.06) (0.04) (0.05) ( 0.05) (0.01)

e(u(−2)) 0.09 0.07 0.04 0.04 0.14**
(0.11) (0.11) (0.13) ( 0.09) (0.04)

e(π(−1)) -0.17 0.10* -0.07 0.07 0.06*
(0.09) (0.05) (0.06) ( 0.08) (0.03)

e(π(−2)) -0.08 -0.07 -0.10 0.01 -0.03
(0.08) (0.05) (0.06) ( 0.07) (0.02)

Overall R2 0.37 0.38 0.35 0.15 0.64

Observations 260 484 532 362 1638

* significant at 5% level, ** significant at 1% level
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C.1.1 Inflation Data

The Bureau of Labor Statistics (BLS) publishes CPI data for 27 MSAs. The BLS publishes

semiannual data for 13 MSAs and higher frequency data (monthly or bimonthly) for the

other 14 MSAs. We use semiannual data to obtain the largest possible sample. Headline

CPI is available back to 1941 for 23 MSAs, with data for the remaining MSAs starting in

1977, 1987, 1997, and 2002. Core CPI is available back to 1982 for 24 MSAs, with data for the

remaining MSAs starting in 1987, 1997, and 2002. When semiannual data are not available

as a published series, we compute the semiannual average following BLS methodology: first,

interpolate the missing monthly indices using a geometric mean of values in adjacent months;

second, calculate the arithmetic average of the monthly data in the first and second half of

each year.

C.1.2 Unemployment Data

The BLS publishes a monthly unemployment rate, not seasonally adjusted, for each of the

27 MSAs with corresponding CPI price indices. Published BLS data are available back to

1990. The BLS has unpublished unemployment data back to 1976, but these data are not

consistent with the published data because of changes in the MSA geographic definitions

and other factors. However, the BLS also has unemployment and labor force data by county,

going back to 1976. We used the county-level data to construct a geographically consistent

definition of MSAs, going back to 1976. The constructed unemployment and labor force

series overlap very closely with the published data in the post-1990 period. We combine our

pre-1990 constructed unemployment rates with the published data to obtain unemployment

rate series back to 1976. The lack of readily accessible unemployment data before 1976 is a

limiting factor for our analysis.

C.2 Description of Data for Structural Model Estimation

C.2.1 State Level

We use the MSA-level inflation data, described above, and map the 27 MSA regions into 20

states with the mapping in Table C.8. For states which contain multiple MSA regions (for

example, Cincinnati and Cleveland are both in Ohio), we select only the data of one of the

MSA regions. In our final inflation dataset used in estimation, we drop inflation data for

the Phoenix MSA, Boston MSA, and Baltimore MSA regions, as there is no inflation data

for these MSAs prior to 1998. Finally, we also note that inflation data is not available in
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1977:H1 to 1978:H1 for Miami.

Table C.8: MSA to State Mapping

State MSA

AK Anchorage
AZ Phoenix
CA Los Angeles
CO Denver
FL Miami
GA Atlanta
HI Honolulu
IL Chicago
KS Kansas City
MA Boston
MD Baltimore
MI Detroit
MO St. Louis
NY New York
OH Cincinnati
OR Portland
PA Philadelphia
TX Dallas
WA Seattle
WI Minneapolis

For the other state-level data series, we use state-level data on employment, output, and

compensation. The observed state data are annual. To construct the data, we first take each

state’s series relative to its initial value, compute the deviation of each state’s observation

from the state mean, regress that series on time dummies, weighted by the state’s relative

population, and work with the residuals. We then take out a linear trend from the resulting

series, for each subsample studied.

Main estimations Here, we provide more details on each series.

• Output: We use state-level data on Gross Domestic Product in current dollars. (BEA

SAGDP2S). The data are available for download at the BEA website.

• Employment: We use state-level data on total employment from the BEA annual table

SA4. In our empirical analysis, we scale this measure of employment by each state’s

population.
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• Labor Compensation: We use state-level data on compensation of employees from the

BEA annual table SA6N.

• Wages: To construct our wages series, we divide total labor compensation by the

number of employed individuals, using the two series described above.

• Population: We use state-level data on population from the BEA annual table SA1-3.

Robustness Exercises In robustness exercises, we use the following data series.

• Income: We use state-level data on personal income from the BEA annual table SA4.

• Household Debt: We use data from the FRBNY Consumer Credit Panel Q4 State

statistics by year. Our measures of debt include auto loans, credit card debt, mortgage

debt and student loans. This database also provides information on the number of

individuals with credit scores in each state, which we use to express the debt data in

per capita terms. We then construct a debt-to-income series by dividing this measure

of per capita debt by per capita income, using the data described above on income and

population from the BEA.

• House Prices: We used data on the not seasonally adjusted house price index available

on the FHFA website.

• Consumption: For the robustness exercise with consumption, we use state-level data

on total personal consumption expenditures by state from the BEA, net of housing.

The data are available for download at the BEA website.

C.2.2 Aggregate Level

At the aggregate level, we use the GDP deflator for inflation, employment, output, wages,

the Fed Funds rates, and ZLB durations from NY Federal Reserve Survey Data. The codes

for each raw data series are as follows:

• Gross Domestic Product: Implicit Price Deflator (GDPDEF).

• Gross Domestic Product: (GDP).

• Cumulated nonfarm business section compensation (PRS85006062) minus employment

growth (PRS85006012) and deflated by the GDP deflator.

• Total employment net of construction, over the civilian noninstitutional population.
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In robustness exercises, we use:

• Household Debt from FRED (code CMDEBT) deflated by PCE deflator, and expressed

relative to income (from the BEA Table 2.1).

• House Prices from Case-Logic.

• Personal Consumption Expenditures (BEA Table 2.4.5U). Current, $. We subtract

housing from consumption.

Fed Funds rate: the interest rate is the Federal Funds Rate, taken from the Federal

Reserve Economic Database.

ZLB Durations: we follow the approach of Kulish, Morley and Robinson (2017) and

use the ZLB durations extracted from the New York Federal Reserve Survey of Primary

Dealers, conducted eight times a year from 2011Q1 onwards.3 We take the mode of the

distribution implied by these surveys. Before 2011, we use responses from the Blue Chip

Financial Forecasts survey.

D Structural Model

The model description follows Jones, Midrigan and Philippon (2022). We describe the model

with the full operative credit channel. But we note that absent this credit channel and the

tradeable production structure, the model would reduce to the familiar 3-equation New

Keynesian model.

D.1 Full Model with Credit Channel

Household problem The economy consists of a continuum of ex ante identical islands

of measure 1 that belong to a trading bloc in a monetary union. Consumers on each is-

land derive utility from the consumption of a final good, leisure, and housing. Let s index

an individual island and pt(s) denote the price of the final consumption good. Individual

households on each island belong to labor unions that sell differentiated varieties of labor.

We assume perfect risk-sharing across households belonging to different labor unions on a

given island. Labor is immobile across islands and the housing stock on each island is in

3See the website here. For example, in the survey conducted on January 18 2011, one of the questions
asked was: “Of the possible outcomes below, please indicate the percent chance you attach to the timing of
the first federal funds target rate increase” (Question 2b). Responses were given in terms of a probability
distribution across future quarters.
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fixed supply. The problem of a household that belongs to labor union ι is to

maxE0

∞∑
t=0

(
t−1∏
j=0

βj(s)

)[∫ 1

0

vit(s) log (cit(s)) di+ ηht (s) log (ht(s))−
ηnt (s)

1 + ν
nt(ι, s)

1+ν

]
, (1)

where ht(s) is the amount of housing the household owns, nt(ι, s) is the amount of labor

it supplies, and cit(s) is the consumption of an individual member i. The term vit(s) ≥ 1

represents a taste shifter, an i.i.d random variable drawn from a Pareto distribution:

Pr(vit(s) ≤ v) = F (v) = 1− v−α. (2)

Here, α > 1 determines the amount of uncertainty about v. A lower α implies more uncer-

tainty. The terms ηht (s) and η
n
t (s) affect the preference for housing and the disutility from

work, while βt(s) is the household’s one-period-ahead discount factor. We assume that each

of these preference shifters have an island-specific component and an aggregate component,

all of which follow AR(1) processes with independent Gaussian innovations. The household’s

budget constraint is:

pt(s)xt(s)+et(s)(ht+1(s)−ht(s)) = wt(ι, s)nt(ι, s)+qtlt(s)−bt(s)+(1+γqt)at(s)+Tt(ι, s), (3)

where xt(s) are transfers made to individual members in the goods market, et(s) is the

price of housing, wt(ι, s) is the wage rate, and Tt(ι, s) collects the profits households earn

from their ownership of intermediate goods firms, transfers from the government aimed at

correcting the steady state markup distortion, and the transfers stemming from the risk-

sharing arrangement.4 We let at(s) denote the amount of coupon payments the household

is entitled to receive in period t, bt(s) the amount it must repay, and qt the economy-wide

price of the securities described below. Thus, qtat(s) represents the household’s total asset

holdings (savings), while qtbt(s) represents its outstanding debt. We describe a household’s

holdings of the security by recording the amount of coupon payments bt that the household

has to make period t. Letting lt(s) denote the amount of securities the household sells in

period t, the date t+ 1 coupon payments are

bt+1(s) =
∞∑
i=0

γilt−i(s) = lt(s) + γbt(s). (4)

The household also faces a liquidity constraint limiting the consumption of an individual

4We assume that households on island s exclusively own firms on that particular island.
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member to be below the amount of real balances the member holds:

pt(s)cit(s) ≤ pt(s)xt(s). (5)

The household also faces a borrowing constraint

qtlt(s) ≤ mt(s)et(s)ht+1(s). (6)

The law of motion for a household’s assets is given by

qtat+1(s) = pt(s)

(
xt(s)−

∫ 1

0

cit(s)di

)
. (7)

There are no barriers to capital flows, so all islands trade securities at a common price qt.

The credit limit mt(s) evolves as the product of an island-specific and aggregate component,

both of which are AR(1) processes with Gaussian disturbances.

At this point, we note that as α → ∞, vit(s) → 1. In this case, there is no idiosyncratic

uncertainty. There is no meaningful role for the liquidity constraints and, since housing is

separable in the utility function and exogenously fixed, there is no role for credit, and the

economy collapses to the standard 3-equation New Keynesian model (see Jones, Midrigan

and Philippon, 2022, for details and a discussion of this point).

Final goods producers Final goods producers on island s produce yt(s) units of the final

good using yNt (s) units of non-tradable goods produced locally and yMt (s, j) units of tradable

goods produced on island j and imported to island s:

yt(s) =

(
ω

1
σ yNt (s)

σ−1
σ + (1− ω)

1
σ

(∫ 1

0

yMt (s, j)
κ−1
κ dj

) κ
κ−1

σ−1
σ

) σ
σ−1

, (8)

where ω determines the share of non-traded goods, σ is the elasticity of substitution between

traded and non-traded goods and κ is the elasticity of substitution between varieties of the

traded goods produced on different islands. Letting pNt (s) and pMt (s) denote the prices of

these goods on island s, the final goods price on an island is

pt(s) =

(
ωpNt (s)

1−σ + (1− ω)

(∫ 1

0

pMt (j)1−κdj

) 1−σ
1−κ
) 1

1−σ

. (9)
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The demand for non-tradable intermediate goods produced on an island is

yNt (s) = ω

(
pNt (s)

pt(s)

)−σ

yt(s), (10)

while demand for an island’s tradable exports yXt (s) is an aggregate of what all other islands

purchase:

yXt (s) = (1− ω)pMt (s)−κ
(∫ 1

0

pMt (j)1−κdj

)κ−σ
1−κ
(∫ 1

0

pt(j)
σyt(j)dj

)
. (11)

Intermediate goods producers Traded and non-traded goods on each island are them-

selves CES composites of varieties of differentiated intermediate inputs with an elasticity of

substitution ϑ. The demand for an individual variety k for non-tradeable goods (for example)

are

yNt (s, k) =
(
pNt (s, k)/p

N
t (s)

)−ϑ
yNt (s).

Individual producers of intermediate goods are subject to Calvo price adjustment fric-

tions. Let λp denote the probability that a firm does not reset its price in a given period.

A firm that resets its price maximizes the present discounted flow of profits weighted by

the probability that the price it chooses at t will still be in effect at any particular date.

As was the case earlier, the production function is linear in labor, but it is now subject to

sector-specific productivity disturbances zNt (s) and z
X
t (s), so that

yjt (s, k) = zjt (s)n
j
t(s, k), for j ∈ {N,X}

so that the unit cost of production is simply wt(s)/z
j
t (s) in both sectors.

For example, a traded intermediate goods firm that resets its price solves

max
pX∗
t (s)

∞∑
j=0

(
λjp

j−1∏
i=0

βt+i(s)

)
µt+j(s)

(
pX∗
t (s)− τp

wt+j(s)

zXt+j(s)

)(
pX∗
t (s)

pXt+j(s)

)−ϑ

yXt+j(s), (12)

where µt+j(s) is the shadow value of wealth of the representative household on island s – that

is, the multiplier on the flow budget constraint (3) – and τp =
ϑ−1
ϑ

is a tax the government

levies to eliminate the steady state markup distortion. This tax is rebated lump sum to

households on island s. The composite price of traded exports or non-traded goods is then

a weighted average of the prices of individual differentiated intermediates. For example, the
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price of export goods is

pXt (s) =
[
(1− λp)p

X∗
t (s)1−ϑ + λpp

X
t−1(s)

1−ϑ] 1
1−ϑ . (13)

Wage setting We assume that individual households are organized in unions that supply

differentiated varieties of labor. The total amount of labor services available in production

is

nt(s) =

(∫ 1

0

nt(ι, s)
ψ−1
ψ dι

) ψ
ψ−1

, (14)

where ψ is the elasticity of substitution between labor varieties. Demand for an individual

union’s labor given its wage wt(ι, s) is therefore nt(ι, s) = (wt(ι, s)/wt(s))
−ψ nt(s). The

problem of a union that resets its wage is to choose a new wage w∗
t (s) to

max
w∗
t (s)

∞∑
j=0

(
λjw

j−1∏
i=0

βt+i(s)

)τwµt+j(s)w∗
t (s)

(
w∗
t (s)

wt+j(s)

)−ψ

nt+j(s)−
ηnt+j(s)

1 + ν

((
w∗
t (s)

wt+j(s)

)−ψ

nt+j(s)

)1+ν
 ,

(15)

where λw is the probability that a given union leaves its wage unchanged and τw = ψ−1
ψ

is a

labor income subsidy aimed at correcting the steady state markup distortion. The composite

wage at which labor services are sold to producers is

wt(s) =
[
(1− λw)w

∗
t (s)

1−ψ + λwwt−1(s)
1−ψ] 1

1−ψ . (16)

D.2 Monetary Policy

Let yt =
∫ 1

0
pt(s)yt(s)/pt ds be total real output in this economy, where pt =

∫ 1

0
pt(s)ds is

the aggregate price index. Let πt = pt/pt−1 denote the rate of inflation and

1 + it = EtRt+1 (17)

be the expected one-period nominal return on the long-term security, which we refer to as the

nominal interest rate. Aggregation over the pricing choices of individual producers implies,

up to a first-order approximation,

log(πt/π̄) = β̄Et log(πt+1/π̄) +
(1− λp)(1− λpβ̄)

λp
(log(wt)− log(zt)) + θt,

where we add an AR(1) disturbance θt to individual firms’ desired markups, β̄ is the steady

state discount factor, and π̄ is the steady-state level of inflation.
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We assume that monetary policy is characterized by a Taylor rule when the ZLB does

not bind:

1 + it = (1 + it−1)
αr

[
(1 + ı̄) παπt

(
yt
y∗t

)αy]1−αr ( yt/y
∗
t

yt−1/y∗t−1

)αx
exp(εrt ),

where εrt is a monetary policy shock; αr determines the persistence; and απ; αy; and αx

determine the extent to which monetary policy responds to inflation, deviations of output

from its flexible price level y∗t , and the growth rate of the output gap, respectively. We

assume that ı̄ is set to a level that ensures a steady state level of inflation of π̄. When the

ZLB binds, then

it = 0.

The interest rate may be at zero either because aggregate shocks cause the ZLB to bind,

or because the Fed commits to keeping it at 0 for a longer time period than implied by the

constraint. We thus implicitly assume that the Fed can manipulate expectations of how the

path of interest rates evolves, as in Eggertsson and Woodford (2003) and Werning (2012).

In our estimation we use survey data from the New York Federal Reserve to discipline the

expected duration of the zero interest rate regime during the 2009 to 2015 period.

Since we assume that an individual island is of measure zero, monetary policy does not

react to island-specific disturbances. The monetary union is closed so aggregate savings must

equal aggregate debt: ∫ 1

0

at+1(s)ds =

∫ 1

0

bt+1(s)ds. (18)

D.3 Estimation Approach

Practically, the use of equations (??) and (??) to estimate the model involves first expressing

each state’s observable variable as a deviation from its aggregate counterpart by subtracting

time effects for each year and each variable. It also involves subtracting a state-specific fixed

effect and time trend for each observable, since in the model, all islands are ex ante identical.

We estimate the model using state-level data, following the strategy described in the

paper. With the purpose of comparing results, we also estimate the model using aggregate

data. In doing so, we jointly estimate the structural parameters and the policy rule.

In all cases, we use Bayesian methods to estimate the model’s structural parameters.5 To

construct the posterior distribution, as the island-level shocks in (??) are independent and

5We estimate λp, λw, αr, αp, αx, αy, and the persistence and standard deviations of the autoregressive
exogenous processes. See Appendix E for the full estimation results.
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do not affect aggregate outcomes, we can write the likelihood of the model as the product of

each individual state’s likelihood, computed from (??). When we estimate the model using

aggregate data, we use equation (??) to compute the aggregate likelihood. For the prior

distributions for the model’s structural parameters, we follow standard practice and use the

same priors Smets and Wouters (2007) use for the Calvo parameters λp and λw. We use this

procedure for both the state-level data and the aggregate data estimations. As it turns out,

assumptions regarding prior distributions of the Calvo parameters can be quite important

in standard aggregate-level estimation. On the other hand, estimates using state-level data

are found to be robust to the assumed priors.6

As we want to illustrate the role that changing policy regimes may have on the estimated

values of the Calvo parameters using aggregate data, we do not wish to take a strong stand

on the priors for the Taylor rule parameters. For this reason, in the estimates we report, we

use uniform priors for αr, αp, αx, and αy. In Appendix Section E.3, we show that results

are similar if we instead used the priors of Smets and Wouters (2007) for the Taylor rule

parameters.

D.4 Mixed Frequency/Observation

As mentioned earlier, our data is such that inflation data do not exist for around half of the

51 states in our panel, and the inflation series is biannual, while other state-level observables

are annual. An innovation of our analysis is to extend the estimation of the structural model

to this unbalanced panel. To do this, let N be the size of the model’s state-space, and define

by zst the (N̂
s
t ×1) vector of state s’s observable variables at time t. Note that the dimension

of state s’s observable vector is changing over time with the availability of data. We map

each state’s zst to the (N × 1) vector of model variables x̂st by the (N̂ s
t ×N) matrix Hs

t :

zst = Hs
t x̂

s
t .

Thus, to allow for estimation using different frequencies and observables, the differences

across states and time are encoded in the matrix Hs
t , so that forecast errors are computed

only for the data series available at each point in time.7

To illustrate the procedure with an example, consider an estimation using an unbalanced

panel dataset consisting of two regions labeled A and B and two observables, inflation and

the output gap (which, for simplicity, also define the state space; that is, N = 2 in the

6See Jones, Kulish and Nicolini (2021), who discuss in detail the role of priors in the estimation of New
Keynesian models with aggregate and state-level data.

7We describe the full Kalman filter in Appendix D.
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dimension of x̂st). With two observables, N̂ s
t can be 0, 1, or 2, depending on data availability.

Assume the following structure for the panel: from period t, the output gap is observed

every two periods for both regions, while inflation is observed every period, but only for

region A. Defining zt =
[
(zAt )

′ (zBt )
′
]′

as the vector of observable variables, the panel’s

structure implies that zt is of dimension N̂A
t + N̂B

t = 2 + 1 in period t and has dimension

N̂A
t+1+N̂

B
t+1 = 1+0 in period t+1. To map these to the state vector, the coefficient matrices

for region A are

HA
t =

[
1 0

0 1

]
, HA

t+1 =
[
1 0

]
,

and the coefficient matrices for region B are

HB
t =

[
0 1

]
,

and HB
t+1 is of zero dimension. Notice that in period t+1, region B exits the set of observable

variables that are used to compute forecast errors and the model’s likelihood with the Kalman

filter.

To the best of our knowledge, by using this procedure, ours is the first paper to show how

to bring an unbalanced panel dataset to the estimation of a structural macro model, which

could prove useful in other contexts and applications. More generally, this flexible approach

opens up more possibilities of how to bring regional-level data to identify key parameters of

macro models, building on the work of Nakamura and Steinsson (2014); Beraja, Hurst and

Ospina (2019); and Jones, Midrigan and Philippon (2022).

D.5 Likelihood Function

We use Bayesian likelihood methods to estimate the parameters of the island economy and

the shocks. We use a panel dataset across states for the state-level estimation, and aggregate

data and the ZLB for the aggregate-level estimation. We formulate the state-space of the

model so as to separate our estimation into a collection of regional components to make it

computationally feasible.

We discuss the likelihood function of the state/regional component and then the likelihood

function of the aggregate component.
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D.5.1 Likelihood of the State Component

We use Bayesian methods. We first log-linearize the model. The log-linearized model has

the state space representation

xt = J+Qxt−1 +Gεt (19)

zt = Htxt. (20)

The state vector is xt. The error is distributed εt ∼ N(0,Ω), where Ω is the covariance

matrix of εt. We assume no observation error of the data zt.

Denote by ϑ the vector of parameters to be estimated. Denote by Z = {zτ}Tτ=1 the

sequence of Nz × 1 vectors of observable variables, combined over states. By Bayes law, the

posterior P(ϑ | Z) satisfies

P(ϑ | Z) ∝ L(Z | ϑ)× P(ϑ).

With Gaussian errors εt, the likelihood function L(Z | ϑ) is computed using the sequence of

structural matrices and the Kalman filter, described below:

logL(Z | ϑ) = −
(
NzT

2

)
log 2π − 1

2

T∑
t=1

log detSt −
1

2

T∑
t=1

ỹ⊤t (St)
−1 ỹt,

where ỹt is the vector of forecast errors and St is its associated covariance matrix.

D.5.2 Kalman Filter

The Kalman filter recursion is given by the following equations. The state of the system is

(x̂t,Pt−1). In the predict step, the structural matrices J, Q and G are used to compute a

forecast of the state x̂t|t−1 and the forecast covariance matrix Pt|t−1 as

x̂t|t−1 = J+Qx̂t

Pt|t−1 = QPt−1Q
⊤ +GΩG⊤. (21)

We update these forecasts with imperfect observations of the state vector. This update step

involves computing forecast errors ỹt and their associated covariance matrix St as

ỹt = zt −Htx̂t|t−1

St = HtPt|t−1H
⊤
t .
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The Kalman gain matrix is given by

Kt = Pt|t−1H
⊤
t S

−1
t .

With ỹt, St and Kt in hand, the optimal filtered update of the state xt is

x̂t = x̂t|t−1 +Ktỹt,

and for its associated covariance matrix,

Pt = (I −KtHt)Pt|t−1.

The Kalman filter is initialized with x0 and P0 determined from their unconditional moments

and is computed until the final time period T of data. We can show that the stationary P0

has the expression

vec(P0) = (I−Q⊗Q)−1 vec(GΩG⊤) (22)

D.5.3 Kalman Smoother

With the estimates of the parameters on a sample up to time period T , the Kalman smoother

gives an estimate of xt|T , or an estimate of the state vector at each point in time given all

available information. With x̂t|t−1, Pt|t−1, Kt, and St in hand from the Kalman filter, the

vector xt|T is computed by

xt|T = x̂t|t−1 +Pt|t−1rt|T ,

where the vector rT+1|T = 0 and is updated with the recursion

rt|T = H⊤
t S

−1
t

(
zt −Htx̂t|t−1

)
+ (I −KtHt)

⊤P⊤
t|t−1rt+1|T .

Finally, to get an estimate of the shocks to each state variable under this model’s shock

structure, denoted by et, we can compute

et = Gεt = Grt|T .
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D.5.4 Block Structure

The regional component of the model has a block structure separated by state. For example,

consider two states so that the log-linearized state-space representation is[
x1t

x2t

]
=

[
J1

J2

]
+

[
Q1 0

0 Q2

][
x1t−1

x2t−1

]
+

[
G1 0

0 G2

][
ε1t

ε2t

]

Under this block structure, the forecast covariance matrix Pt|t−1 also has a block structure.

This is clear from the expressions (21) and (22).

The block structure is also helpful for computational reasons. The log-likelihood becomes

a weighted sum of state-by-state log-likelihood functions. To show this: because Pt|t−1 has

a block structure, so does St. And because St has a block structure

log det St = log
∏
j

det Sjt =
∑
j

log det Sjt .

Also, because St has a block structure, so does its inverse, so that the last term in the

log-likehood can also be separated by state. The log-likelihood is then

logL(Z | ϑ) =
∑
s

logLs(Zs | ϑ).

D.6 Likelihood of the Aggregate Component

D.6.1 Solution with Zero Lower Bound

We write the model that approximates the ZLB in the following way. Under the ZLB, the

economy has time variation in the evolution of the model’s structural parameters At, Bt,

Ct, Dt, and Ft, where

Atxt = Ct +Btxt−1 +DtEtxt+1 + Ftϵt.

For example, if the ZLB binds, the equation describing the Taylor rule becomes it = 0,

changing the structural matrices At, and so on. With time-varying structural matrices, the

solution we seek is the time-varying VAR representation:

xt = Jt +Qtxt−1 +Gtϵt, (23)
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where Jt, Qt and Gt are conformable matrices that are functions of the evolution of beliefs

about the time-varying structural matrices At, Bt, Ct, Dt, and Ft (Kulish and Pagan, 2017).

These matrices satisfy the recursion

Qt = [At −DtQt+1]
−1Bt

Jt = [At −DtQt+1]
−1 (Ct +DtJt+1)

Gt = [At −DtQt+1]
−1Et,

where the final structures QT and JT are known and computed from the time invariant

structure above under the terminal period’s structural parameters–that is, the no-ZLB case.

Given a sequence of ZLB durations, the state-space of the model is

xt = Jt +Qtxt−1 +Gtεt

zt = Htxt.

The observation equation is time-varying because the nominal interest rate becomes unob-

served when it is at its bound.

Denote by ϑ the vector of parameters to be estimated and by T the vector of ZLB

durations that are observed each period. Denote by Z = {zτ}Tτ=1 the sequence of vectors

of observable variables. With Gaussian errors, the likelihood function L(Z,T | ϑ) for the

aggregate component is computed using the sequence of structural matrices associated with

the sequence of ZLB durations, and the Kalman filter:

logL(Z,T | ϑ) = −
(
NzT

2

)
log 2π − 1

2

T∑
t=1

log detHtStH
⊤
t − 1

2

T∑
t=1

ỹ⊤t
(
HtStH

⊤
t

)−1
ỹt.

D.6.2 Kalman filter

The state of the system is (x̂t,Pt−1). In the predict step, the structural matrices Jt, Qt,

and Gt are used to compute a forecast of the state x̂t|t−1 and the forecast covariance matrix

Pt|t−1 as

x̂t|t−1 = Jt +Qtx̂t

Pt|t−1 = QtPt−1Q
⊤
t|t−1 +GtΩG

⊤
t .

This formulation differs from the time-invariant Kalman filter used at the state level, because

in the forecast stage, the matrices Jt, Qt and Gt can vary over time. We update these fore-
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casts with imperfect observations of the state vector. This update step involves computing

forecast errors ỹt and its associated covariance matrix St as

ỹt = zt −Htx̂t|t−1

St = HtPt|t−1H
⊤
t .

The Kalman gain matrix is given by

Kt = Pt|t−1H
⊤
t S

−1
t .

With ỹt, St, and Kt in hand, the optimal filtered update of the state xt is

x̂t = x̂t|t−1 +Ktỹt,

and for its associated covariance matrix:

Pt = (I −KtHt)Pt|t−1.

The Kalman filter is initialized with x0 and P0 determined from their unconditional moments

and is computed until the final time period T of data.

D.6.3 Kalman Smoother

With the estimates of the parameters and durations in hand at time period T , the Kalman

smoother gives an estimate of xt|T , or an estimate of the state vector at each point in time

given all available information (Hamilton, 1994). With x̂t|t−1, Pt|t−1, Kt and St in hand from

the Kalman filter, the vector xt|T is computed by

xt|T = x̂t|t−1 +Pt|t−1rt|T ,

where the vector rT+1|T = 0 and is updated with the recursion:

rt|T = H⊤
t S

−1
t

(
zt −Htx̂t|t−1

)
+ (I −KtHt)

⊤P⊤
t|t−1rt+1|T .

Finally, to get an estimate of the shocks to each state variable under this model’s shock

structure, denoted by et, we compute:

et = Gtεt = Gtrt|T .

28



Table E.9: Calibrated Parameters

Parameter Value Description Source/Target

ν 2 Inverse labor supply elasticity
β 0.995 Quarterly discount factor 2% annual real rate
ω 0.7 Weight on non-traded goods
σ 0.5 Elasticity traded/non-traded
κ 4 Elasticity traded goods Simonovska and Waugh (2014)
ψ 21 Elasticity labor aggregator Christiano, Eichenbaum and Evans (2005)

D.7 Posterior Sampler

This section describes the sampler used to obtain the posterior distribution of interest. We

compute the likelihood function at the state level and the aggregate level, together with the

prior. The posterior of our full model P(ϑ | T,Z) satisfies

P(ϑ | T,Z) ∝ L(Z,T | ϑ)× P(ϑ).

We use a Markov Chain Monte Carlo procedure to sample from the posterior. It has a

single block, corresponding to the parameters ϑ.8 The sampler at step j is initialized with

the last accepted draw of the structural parameters ϑj−1.

First, start by selecting which parameters to propose new values. For those parameters,

draw a new proposal ϑj from a proposal density centered at ϑj−1 and with thick tails to

ensure sufficient coverage of the parameter space and an acceptance rate of roughly 20% to

25%. The proposal ϑj is accepted with probability
P(ϑj |T,Z)

P(ϑj−1|T,Z)
. If ϑj is accepted, then set

ϑj−1 = ϑj.

E Additional Structural Model Estimation Results

E.1 Calibrated Parameters

Table E.9 details the small set of parameters that are calibrated prior to estimation.

8It is worth noting that as in Kulish, Morley and Robinson (2017), in addition to the structural parame-
ters, one can estimate the expected zero lower bound durations, in which case an additional block is needed
in the posterior sampler.
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Table E.10: Structural Estimation, State Data Only

Prior Posterior

Parameter Dist Mean SD Mode 5% 95%

λp B 0.5 0.1 0.59 0.57 0.61
λw B 0.5 0.1 0.41 0.39 0.43
ρz B 0.5 0.2 0.99 0.98 0.99
ρn B 0.5 0.1 0.96 0.95 0.97
ρb B 0.5 0.2 0.96 0.96 0.97
ρNz B 0.5 0.2 0.96 0.95 0.97
σz IG 2.0 1.4 1.49 1.45 1.54
σn IG 2.0 1.4 0.03 0.03 0.04
σb IG 2.0 1.4 0.63 0.56 0.70
σNz IG 2.0 1.4 1.37 1.31 1.42

E.2 Full Structural Model Estimation Results

Tables E.10 and E.11 give the full prior and posterior distributions of the estimated structural

parameters using state and aggregate data, respectively.

The parameters are the Calvo parameter on prices λp, the Calvo parameter on wages λw,

the persistence of TFP shocks ρz, the persistence of labor disutility shocks ρn, the persistence

of preference shocks ρb, the persistence of non-tradeable TFP shocks ρNz , and the respective

standard deviations of those four shocks. At the aggregate level, we also have the persistence

of markup shocks ρp, the standard deviation of markup shocks σp, and the standard deviation

of policy interest rate shocks σr. The Taylor rule parameters are given by αr, αp, αx, and

αy.

We choose the same prior as Smets and Wouters (2007) for the Calvo parameters. Our

remaining priors are chosen to be wide/diffuse. We choose a somewhat tighter prior on the

persistence of labor disutility shocks at the state-level as preliminary estimations took ρn to

a value of 1. We use uniform priors over a wide range for the parameters of the Taylor rule.

E.3 Robustness

E.3.1 Estimation with Credit Channel

Results with an active credit channel and the use of household debt and house prices as

observables are shown in Tables E.12 to E.16. The structure of the results is similar to that

of the main tables reported in the text.
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Table E.11: Structural Estimation, Aggregate Data Only

Prior Posterior

Parameter Dist Mean SD Mode 5% 95%

λp B 0.5 0.1 0.92 0.90 0.94
λw B 0.5 0.1 0.84 0.80 0.88
ρz B 0.5 0.2 0.96 0.94 0.97
ρn B 0.5 0.2 0.08 0.03 0.18
ρb B 0.5 0.2 0.86 0.84 0.88
ρp B 0.5 0.2 0.91 0.86 0.95
σz IG 2.0 1.4 0.58 0.53 0.64
σn IG 2.0 1.4 0.11 0.07 0.21
σb IG 2.0 1.4 2.73 2.35 3.25
σp IG 2.0 1.4 0.37 0.28 0.52
σr IG 2.0 1.4 1.53 1.28 1.95
αr U 0.5 0.3 0.80 0.73 0.84
αp U 4.5 2.6 2.38 1.98 2.86
αx U 1.0 0.6 0.46 0.36 0.62
αy U 1.0 0.6 0.28 0.21 0.37

Table E.12: Posterior Distributions, Relative State Data Only, with Credit

1977 to 2017 1977 to 1998 1999 to 2017

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.59 0.58 0.61 0.58 0.55 0.60 0.62 0.61 0.64
λw 0.38 0.35 0.39 0.50 0.46 0.54 0.40 0.39 0.43
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Table E.13: Posterior Distributions, Aggregate Data Only, with Credit

1977 to 2015 1977 to 1998 1999 to 2015

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

Calvo Parameters

λp 0.92 0.89 0.94 0.84 0.79 0.89 0.93 0.90 0.94
λw 0.83 0.81 0.94 0.90 0.87 0.93 0.84 0.79 0.88

Taylor Rule Parameters

αr 0.80 0.72 0.85 0.68 0.40 0.78 0.77 0.70 0.84
αp 2.38 1.93 2.82 2.00 1.52 3.13 1.06 1.03 1.85
αx 0.44 0.37 0.65 1.56 0.89 1.94 0.18 0.13 0.24
αy 0.27 0.20 0.36 0.07 0.01 0.24 0.23 0.20 0.30

Notes: Beta(0.5, 0.1) prior on Calvos. Uniform priors on Taylor Rule parameters

Table E.14: Implied Slopes of Phillips Curve at Baseline Estimates, with Credit

1977 to 2015 1977 to 1998 1999 to 2015

A. State-Level Estimates

Prices⋆ 0.279 0.306 0.228
Wages† 1.044 0.517 0.882

B. Aggregate-Level Estimates

1977 to 2017 1977 to 1998 1999 to 2017

Prices⋆ 0.008 0.032 0.007
Wages† 0.034 0.012 0.031

⋆: Price Phillips curve slope is (1− βλp)(1− λp)/λp
†: Wage Phillips curve slope is (1− βλw)(1− λw)/λw
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Table E.15: Posterior Distributions, Interaction with Policy Rules, with Credit

A. Aggregate Data Only, Fixed Taylor Rule Parameters

1977 to 2015⋆ 1977 to 2015† 1977 to 2015‡

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.92 0.89 0.94 0.87 0.80 0.89 0.92 0.89 0.94
λw 0.83 0.81 0.94 0.71 0.67 0.73 0.95 0.80 0.95

B. Aggregate Data Only, Policy Regime Periods

1965 to 2015 1965 to 1985§ 1986 to 2015§

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.86 0.83 0.90 0.72 0.67 0.77 0.93 0.90 0.95
λw 0.90 0.87 0.93 0.91 0.88 0.94 0.87 0.83 0.90
αr 0.93 0.90 0.95 0.95 0.86 0.96 0.86 0.81 0.91
αp 4.02 3.30 7.29 4.48 2.81 9.43 2.42 1.85 3.62
αx 0.46 0.40 0.59 0.55 0.44 0.79 0.21 0.15 0.27
αy 0.77 0.46 1.13 0.82 0.34 1.72 0.27 0.20 0.38

⋆: Estimated Taylor Rule with uniform priors
†: Taylor Rule parameters fixed at 1977 to 1998 estimates (see Table E.13)
‡: Taylor Rule parameters fixed at 1999 to 2015 estimates (see Table E.13)
§: No credit or house price series and no credit or housing preference shocks

Table E.16: Implied Slopes of Phillips Curve at Aggregate Estimates

1977 to 2015 1977 to 1998 1999 to 2015

A. Aggregate-Level Estimates, Fixed Taylor Rule

Prices⋆ 0.008 0.020 0.008
Wages† 0.034 0.117 0.003

B. Aggregate-Level Estimates, Policy Regime Periods

1965 to 2005 1965 to 1985 1986 to 2005

Prices⋆ 0.022 0.107 0.006
Wages† 0.012 0.009 0.020

⋆: Price Phillips curve slope is (1− βλp)(1− λp)/λp
†: Wage Phillips curve slope is (1− βλw)(1− λw)/λw
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Table E.17: Aggregate-Level, Smets and Wouters (2007) Priors on Calvos and Taylor Rule

1977 to 2015 1977 to 1998 1999 to 2015

Parameter Mode 5% 95% Mode 5% 95% Mode 5% 95%

λp 0.92 0.89 0.94 0.87 0.82 0.91 0.92 0.90 0.94
λw 0.84 0.79 0.88 0.90 0.87 0.93 0.84 0.80 0.89
αr 0.79 0.75 0.82 0.80 0.74 0.84 0.78 0.72 0.82
αp 1.70 1.53 1.87 1.61 1.44 1.81 1.41 1.24 1.62
αx 0.30 0.26 0.35 0.33 0.28 0.39 0.15 0.11 0.20
αy 0.20 0.16 0.25 0.18 0.13 0.24 0.23 0.19 0.26

Table E.18: Posterior of Calvo Prices λp and Calvo Wages λw

(1) (2)

Mode 10% 90% Mode 10% 90%

λp 0.57 0.55 0.58 0.58 0.57 0.60
λw 0.33 0.31 0.35 0.34 0.33 0.36

(1): 1999 to 2015, consumption spending and no credit shocks
(2): 1999 to 2015, consumption spending

E.3.2 Smets and Wouters (2007) Priors on Calvo and Taylor Rule

Parameters

Table E.17 shows the estimated structural parameters when the same priors as Smets and

Wouters (2007) are used on the Calvo parameters and on the Taylor rule parameters. In

these estimations, there is a role for the credit channel.

E.3.3 State-Level Estimation with Consumption

The results from an estimation using state-level consumption spending are given in Table

E.18. The estimated nominal frictions are lower–in the model, nominal output equals nom-

inal consumption, and since consumption is less volatile than output, the model estimation

explains relatively more volatile prices and wages with more flexible prices. The addition of

credit shocks does not change the estimated λp and λw, as for the estimation using nominal

output.
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