
gensys C++ mex Function and Julia Comparison

Callum Jones∗

New York University

These are brief notes on a C++ implementation of gensys as a Matlab mex function. It sig-

nificantly speeds up computation relative to the original gensys implementation by using

LAPACK routines to compute the Schur (QZ) decomposition associated with Sims’ (2002)

solution of rational expectations models. I compare an easy change to the Matlab files which

significantly speeds up the Matlab routines making them comparable to Julia routines.

The approach will be to write as a mex function the component of the gensys solution method
which reorders the output of the necessary Schur (or QZ) decomposition. Why this Schur decom-
position is needed is described in the appendix here. Using the C++ function significantly speeds
up computation of the rational expectations solution.

1 mex function

A mex function is a Matlab executable, allowing you to run routines written in C++ (or C or Fortan)
directly in Matlab, in the style of a Matlab function. These can be very useful if we want to run
numerical routines which are much faster in programming languages other than Matlab’s, while
maintaining the nice interface and ease of matrix operations that Matlab offers.

A mex function requires a gateway routine. This needs to be named mexFunction and takes
four parameters: nlhs, plhs[], nrhs, and prhs[]. The two inputs nlhs and nrhs are integers
specifying the number of LHS (output) and RHS (input) arguments. The input and output matrices
are of type mxArray*, that is, they point to Matlab arrays. They are stored sequentially in plhs[]

and prhs[]. Once we have extracted the Matlab input objects, we can write C++ routines as
normal on those objects.1

For the gensys application, the mex gateway function is written in qz .cpp and has the fol-
lowing structure:

∗Department of Economics, New York University. Email: callum.jones@nyu.edu. All remaining errors are
mine. Date: January 26, 2016.

1A note on data organization in C++: the elements of the matrix are stored column-wise, so that, for example, for
the following matrix:

Z =

[
a b
c d

]
,

in C++, Z is stored as Z[0] = a, Z[1] = c, Z[2] = b and Z[3] = d.

1

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

// Extract and setup objects and call LAPACK QZ decomposition routine

}

In the header, we include the mex header file, mex.h to use the Matlab mex library. This defines
mex types and functions, which are needed to make the input objects compatible with LAPACK
routine types. Here, I use the LAPACK routine zgges to do the Schur decomposition. For zgges,
I need to use double* types. To copy data from mxArray* to double*, we need to use the
function mxGetPr. mxCreateDoubleMatrix will return a pointer to an object of type mxArray.
mxDestroyArray is used for memory management.

(See the file qz .cpp for the gateway function and for how the mex objects are created and used
together with the LAPACK routines.)

2 Compiling

To compile the mex file, we need to link to Matlab’s mex compiler. Then we need to link to the right
folders for the LAPACK and math libraries in the makefile and adjust the suffix of the function
file to be correct for the system compiled on. For example, for Macs, this suffix is mexmaci64.
The makefile is:

MEX = /Applications/MATLAB_R2013a_Student.app/bin/mex

SDIR = .

LPDIR = $(HOME)/Documents/lib/clapack

FLIB = $(HOME)/Documents/lib/clapack/F2CLIBS

BLDIR = $(HOME)/Documents/lib/clapack/BLAS

INDIR = $(HOME)/Documents/lib/clapack/INCLUDE

LDFLAGS = -I$(SDIR) -I$(INDIR) -lm -L$(BLDIR) $(FLIB)/libf2c.a \

$(LPDIR)/lapack_LINUX.a $(LPDIR)/blas_LINUX.a

qz_.mexmaci64 :

$(MEX) qz_.cpp $(LDFLAGS)

clean :

rm -f *.mexmaci64

To compile the makefile with name makefile from the Matlab command line, run !make. This
creates the function qz .mexmaci64.

2

3 New files

With the new Schur decomposition function, we do not need the files qzswitch, qzdiv and
qzdivct. The lines of the gensys code where the QZ decomposition is computed and reordered
are deleted and replaced with the mex function:

[A, B, Q, Z] = qz_(GAM0,GAM1) ;

The remainder of the gensys function is unchanged.

4 Testing

The Matlab function test qz tests that the QZ decomposition outputs the correct results and for the
Ireland (2004) model with 128 variables (including 120 quarter long-rates) that the solution from
the original gensys and new gensys are the same (Fig 1). The speed increase is: 0.9380 s

0.1040 s = 9×.

0 2 4 6 8 10 12 14 16 18 20
−1

−0.5

0
Inflation

gensys

gensys_ (C++ impl.)

0 2 4 6 8 10 12 14 16 18 20
−0.1

0

0.1
Interest rate

0 2 4 6 8 10 12 14 16 18 20
0

1

2
Output gap

Figure 1: IRF for both implementations. They give the same solution.

3

5 Comparison of gensys to Julia implementation

A recent effort at the FRBNY interestingly develops Julia routines that solve and maximize the
likelihood of the FRBNY’s DSGE model.2 Their Julia routines result in significant speed-ups
of between 10% and 75% beyond the baseline Matlab routine. As they discuss, it is hard to
disentangle the performance improvement due to the actual implementation and the performance
improvement due to the difference in programming/execution environments. I show in this section
that a simple two-line change to the baseline Matlab files in the FRBNY’s implementation can
result in Matlab performance times that are much closer to the Julia implementation.

As described in the appendix the main computational effort in solving a linear rational expec-
tations model is the QZ decomposition and the reordering of the matrices of the decomposition
to match those matrices’ generalized eigenvalues in ascending order. The original gensys imple-
mentation does this reordering in separate functions qzdiv, qzswitch and qzdivct. However,
the same computation can be done very efficiently in Matlab using the ordqz function.

To test the performance differences, I time how long it takes to complete three iterations of the
function which minimizes the posterior of the FRBNY, as in the test functions in the FRBNY Julia
implementation and as in the latest version of the Matlab implementation of the FRBNY model.
Ideally the Matlab implementation of the model would be further optimized, for example, with
all output prompts suppressed. Also, the comparison between the two methods would ideally be
initialized at the same starting value and Hessian. While I don’t do this, the comparison between
the original Matlab benchmark, the adjusted Matlab implementation and the Julia implementation
is informative.

Time relative to Matlab original gensys benchmark
Matlab - original gensys Matlab - with ordqz Julia - optimize test

1.00 0.60 0.47

As the table shows, making the straightforward adjustment of the functions which reorder the
solution matrices provides a significant speed up in the Matlab environment – this performance
improvement was captured in the C++ implementation above.

A The QZ decomposition in the linear RE solution

Write a linear rational expectations model in matrix form as:

Γ̃0yt = Γ̃1yt−1 +C̃+ Ψ̃εt , (1)

2See Marco Del Negro, Marc Giannoni, Pearl Li, Erica Moszkowski and Micah Smith, The FRBNY DSGE Model
Meets Julia, December 2015.

4

where yt is the state vector, defined by yt = [y′1,t y′2,t Etz′t+1]′ where y1,t is a (n1×1) vector of
exogenous and endogenous variables, and y2,t is a (n2×1) vector with those endogenous variables
for which conditional expectations appear. The vector zt+1 of size (k× 1) contains leads of y2,t .
The dimension of yt is (n×1), where n = n1 +n2 + k. Assume εt to be a (l×1) vector of serially
uncorrelated processes. The matrices Γ̃0 and Γ̃1 are (n1 +n2)×n matrices, C̃ is (n1 +n2)×1 and
Ψ̃ is (n1 +n2)× l.

We seek a solution of the model (1) in the form of a VAR(1). There are (n1 + n2) equations
in model (1), and so because of the presence of expectations, it is not possible to invert Γ̃. Sims’
(2002) proposal is to append to (1) expectations revisions which will be solved as part of the
solution. Let ηt be the vector of expectations revisions:

ηt = Etzt−Et−1zt , (2)

where Etηt+ j = 0 for j ≥ 1. For example, if zt = y2,t , then ηt are forecast revisions.
Augment the system defined by Equation (1) with the k equations from Equation (2):

Γ0yt =C+Γ1yt−1 +Ψεt +Πηt . (3)

where the matrices Γ0, Γ1,C,Ψ, and Π are of conformable dimensions. Γ0 is now an n×n matrix,
which we will invert with a Schur (QZ) decomposition, and impose conditions such that we can
remove the ηt from the system. It is this QZ decomposition which can be sped up in the original
gensys implementation.

To solve (3) as Sims (2002), take a Schur (QZ) decomposition of (Γ0,Γ1) to get Q′ΛZ′ = Γ0

and Q′ΩZ′ = Γ1, where Λ and Ω are both upper triangular. The matrices Q and Z are unitary, so
that QQ′ = I and ZZ′ = I. Pre-multiply model equation by Q and define wt = Z′yt to rewrite the
system as:

Λwt = Ωwt−1 +Q(C+Ψεt +Πηt).

Define w1,t = Z′1yt and w2,t = Z′2yt . Λ and Ω are upper triangular and have the property that
the generalized eigenvalues of (Γ0,Γ1) are ratios of diagonal elements of Ω and Λ. Rearrange
the system so that the explosive eigenvalues correspond to the lower right blocks of Λ and Σ,
partitioning wt and rewriting the system as:(

Λ11 Λ12

0 Λ22

)(
w1,t

w2,t

)
=

(
Ω11 Ω12

0 Ω22

)(
w1,t−1

w2,t−1

)
+

(
Q1

Q2

)
(C+Ψεt +Πηt).

The lower block of the system are those equations which correspond to the m explosive generalised
eigenvalues of (Γ0,Γ1). The lower set of equations are not affected by w1,t . Isolate these:

Λ22w2,t = Ω2,2w2,t−1 +Q2 (C+Ψεt +Πηt) .

5

For stability, the ηt needs to offset the effect of εt on w2,t . To see this, solve w2,t forward:

w2,t = (Λ22−Ω22)
−1 Q2C−

∞

∑
j=1

(
Ω
−1
22 Λ22

) j−1
Ω
−1
22 Q2(Ψεt+ j +Πηt+ j).

This says that w2,t requires having in hand all future values of εt and ηt at time t. Take expectations
of this expression at time t to get:

w2,t = (Λ22−Ω22)
−1 Q2C−Et

∞

∑
j=1

(
Ω
−1
22 Λ22

) j−1
Ω
−1
22 Q2Ψεt+ j.

Also take expectations at time t +1 to get:

w2,t = (Λ22−Ω22)
−1 Q2C−Et+1

∞

∑
j=1

(
Ω
−1
22 Λ22

) j−1
Ω
−1
22 Q2Ψεt+ j−Ω

−1
22 Q2Πηt+1.

Note the left hand side has not changed, so equating these two expressions implies:

Q2Πηt+1 = Ω22

∞

∑
j=1

(
Ω
−1
22 Λ22

) j−1
Ω
−1
22 Q2

(
Etεt+ j−Et+1εt+ j

)
.

This says that for the system to be stable the expectations revisions must offset the effect that
shocks εt have on the explosive component of the system, w2,t . Expectations revisions ensure that
the system is placed on the saddle path to stability. For this to be true, Sims (2002) shows that what
is required for a unique solution is that the number of explosive eigenvalues of (Γ0,Γ1), m equals
the number of variables which appear as expectations in the system, k. Under this condition, the
system is on a saddle path to a steady-state from any initial condition (there are weaker conditions
just for stability.) If this is true, and if the solution is stable then there is a matrix Φ such that
Q1Π = ΦQ2Π. By premultiplying the system by [In−p,−Φ], the coefficient on ηt is Q1Π−ΦQ2Π.
Since existence of a solution requires Q1Π = ΦQ2Π, the ηt drop out of (1), so that a solution is:

yt = S0 +S1yt−1 +S2εt +SyEt

∞

∑
j=1

M j−1
Ω
−1
22 Q2Ψεt+ j,

where:

H = Z

(
Σ
−1
11 −Σ

−1
11 (Σ12−ΦΣ22)

0 I

)
, S0 = H

(
Q1−ΦQ2

(Σ22−Ω22)
−1 Q2

)
C,

and

S1 = H

(
Ω11 Ω12−ΦΩ22

0 0

)
, S2 = H

(
Q1−ΦQ2

0

)
Ψ, Sy =−H

(
0
Im

)
.

6

	mex function
	Compiling
	New files
	Testing
	Comparison of gensys to Julia implementation
	The QZ decomposition in the linear RE solution

