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Abstract

We evaluate and partially challenge the household leverage view of the Great Recession. In

the data, employment and consumption declined more in U.S. states where household debt

declined more. We study a model of a monetary union composed of many regions in which

liquidity constraints shape the response of employment and consumption to changes in

debt. We estimate the model with Bayesian methods combining state and aggregate data.

Changes in household credit explain 40% of the differential rise and fall of employment

across states, but a small fraction of the aggregate employment decline in 2007-2010.

Nevertheless, since household deleveraging was gradual, credit shocks greatly slowed the

recovery.
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1 Introduction

A salient feature of the Great Recession is that U.S. regions with the largest declines in household

debt had the largest declines in employment and consumption. Figure 1 illustrates this pattern,

originally documented in a series of papers by Mian and Sufi.1 One interpretation of this

evidence that has received a lot of attention is the household leverage view of the recession.

According to this view, declines in household debt forced households to reduce consumption

and, because of price rigidities and trade frictions, caused a reduction in employment.

Our goal in this paper is to quantitatively evaluate the household leverage view of the re-

cession. We ask: how important were shocks to household credit in generating fluctuations in

employment and consumption across regions and in the aggregate? The evidence in Figure 1

does not directly answer this question for at least two reasons. First, a variety of shocks, in

addition to credit shocks, affect the economy. Second, the response of employment or con-

sumption in an individual state to credit shocks may be very different than the response in the

aggregate. Extrapolating from the cross-sectional to the aggregate elasticity requires a careful

consideration of trade patterns and monetary policy.

We therefore use a model to isolate the effects of credit shocks and answer our question. We

study a tractable model of a monetary union composed of many regions that trade. Households

face liquidity constraints that restrict their ability to use the equity in their homes to finance

consumption. These constraints generate a time-varying spread between the equilibrium interest

rate and the households’ rate of time preference. In our baseline model we assume that credit

shocks affect loan-to-value constraints which limit the amount of housing equity that households

can extract. In an extension we obtain similar results by assuming instead that household debt

fluctuates in response to credit supply shocks. In addition to credit shocks, households in each

region are subject to a number of additional disturbances to productivity and preferences.

We estimate the model using Bayesian full-information methods and data on employment,

consumption, wages, house prices and household debt at the regional and aggregate levels. An

important challenge that arises in our estimation is that the policy interest rate was at the zero

lower bound (ZLB) during part of our sample. We account for the non-linearities arising from

this bound by using a piece-wise linear solution method.2 Even with this approximation, a

direct application of full-information methods is infeasible in our setting given the large number

of regional and aggregate state variables. We therefore develop a methodology that allows us

1See Mian and Sufi (2011); Mian et al. (2013); Mian and Sufi (2014) for additional evidence.
2See Eggertsson and Woodford (2003); Guerrieri and Iacoviello (2015); Jones (2017).
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Figure 1: State Debt, Employment, and Spending
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to combine regional and aggregate data to evaluate the likelihood function.

A popular approach to modeling household debt is to assume heterogeneity in agents’ rate

of time preference, as in Iacoviello (2005) and a large literature that follows.3 These models

feature a single financial asset, which impatient households use to borrow from patient house-

holds. A tightening of credit limits reduces the amount that impatient households borrow and

translates into a one-for-one drop in their consumption, but, in the absence of changes in the

equilibrium interest rate, leaves patient households unaffected. Such models thus predict that

consumption in an individual region changes one-for-one with changes in household debt, re-

gardless of how many agents are impatient, as long as the region is sufficiently small that it does

not affect the economy-wide interest rate. One-asset models therefore imply counterfactually

large comovements between consumption and credit across regions, at odds with the evidence

in Figure 1.

Motivated by this observation, we pursue an alternative approach. We assume that house-

holds are subject to idiosyncratic shocks to their liquidity needs which make it optimal for

them to simultaneously hold liquid assets and borrow. A household can therefore respond to a

3See Eggertsson and Krugman (2012); Justiniano et al. (2015); Guerrieri and Iacoviello (2017) for the U.S.,
and Martin and Philippon (2014); Gourinchas et al. (2016) for the Eurozone.
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tightening of credit by drawing on its liquid assets instead of cutting consumption. The extent

to which it does so depends on the volatility of idiosyncratic shocks. If these shocks are volatile,

liquid assets are valuable and the household maintains its liquid asset position, thus reducing

consumption sharply after a credit tightening. If, in contrast, the volatility of idiosyncratic

shocks is low, households find it optimal to dip into their liquid assets to insulate consumption

from credit shocks. Our model thus flexibly nests both one-asset models in which a region-

specific tightening of credit leads to a large drop in consumption, as well as the frictionless

model in which credit shocks have no effect on consumption. We view this framework as our

main theoretical contribution: it is flexible enough to capture complex credit dynamics but

simple enough to be estimated on a full panel of regional economic data.

We next explain why households in our model value liquidity. The typical approach to

modeling the notion that housing equity is illiquid is to assume that agents must pay a fixed

cost to refinance their mortgage, as in the work of Kaplan et al. (2020) and Boar et al. (2020).

Since most homeowners who do not refinance are constrained,4 they save in a liquid asset in

order to smooth consumption. By contrast, considerations of computational tractability lead us

to follow an alternative approach inspired by Lucas (1990). Agents in our model can costlessly

rebalance their portfolios between periods, but they must do so prior to the realization of

an idiosyncratic preference shock. We achieve tractability by assuming a family construct to

eliminate the distributional consequences of asset market incompleteness.5 These assumptions

allow us to parsimoniously model an interest-elastic supply of liquid assets of the type that

would arise in richer but less tractable models of mortgage refinancing. In particular, the larger

the interest rate is relative to the rate of time preference, the more households save in their

liquid accounts to smooth the impact of idiosyncratic shocks. Our notion of liquidity therefore

closely resembles that in the work of Shi (2015), Rocheteau et al. (2018) and Kiyotaki and

Moore (2019) in which liquidity is valued because of idiosyncratic investment opportunity or

preference shocks.

Consider now the macroeconomic implications of a credit shock. At the economy-wide

level, a tightening of credit leads to a reduction in the natural interest rate. The drop in the

natural rate depends on the volatility of idiosyncratic preference shocks: more volatile shocks

reduce the elasticity of liquid assets and imply a larger fall in the natural rate. If prices are

sticky and monetary policy is unable to track movements in the natural rate, the credit shock

4See Amromin et al. (2007) and Adelman et al. (2010) for evidence on this.
5See also Lucas and Stokey (2011) who emphasize the role of liquidity frictions and Challe and Ragot (2016)

who use a family construct to characterize an economy with uninsurable unemployment risk.

3



leads to a decline in employment. The response to economy-wide credit shocks is therefore

highly non-linear depending on how long the ZLB is expected to constrain monetary policy.

At the regional level, a tightening of credit acts like a sudden stop by forcing an increase in

the net foreign asset position, as in Gourinchas et al. (2016), but the extent of the increase

in net foreign assets depends, once again, on the volatility of idiosyncratic shocks. Hence, the

same parameter governing the elasticity of liquid assets determines both the economy-wide and

regional implications of a tightening of credit, a feature that we exploit in estimation.

We estimate three structural parameters that play a key role in shaping the economy’s re-

sponse to a credit shock: the degrees of wage and price stickiness, and the degree of idiosyncratic

uncertainty. We also estimate the persistence and volatility of the regional and aggregate shock

processes. To make full-information estimation feasible we exploit the structure of the model

and express regional level variables as deviations from the corresponding aggregates. Up to a

first-order approximation, these deviations evolve according to a law of motion that is inde-

pendent of monetary policy. This structure allows us to separate the likelihood function into

independent state-level and aggregate components. Intuitively, our estimation exploits the dif-

ferential rise and fall of individual states’ spending, employment, debt, wages and house prices,

in addition to the aggregate comovement of these series, to identify the structural parameters.

We use the model to generate counterfactual series for employment and consumption by

turning off all shocks other than credit shocks. We find that credit shocks alone account for 40

– 50% of the relative movements in state-level employment and consumption during the 2002

to 2010 period. Our findings are thus consistent with those of Mian and Sufi (2011, 2014) who

argue that household credit played an important role at the regional level.

We next discuss the model’s economy-wide implications. We distinguish between two pe-

riods: the onset of the Great Recession from 2007 to 2010, and the recovery period up to the

end of 2012. Given the non-linear nature of the responses at the ZLB, we provide bounds on

the impact of credit shocks. The lower bound assumes no ZLB. The upper bound assumes that

the ZLB binds and that the Fed does not pursue forward guidance. Under both bounds we find

that household credit shocks have a relatively small impact on employment between 2007 and

2010. In the data, employment fell by 7% during this period. In contrast, the lower and upper

bounds on the contribution of credit shocks to the decline in employment are 0.5% and 1.7%,

respectively. Thus, even under the stark assumption that the Fed did not react to credit shocks

at all, household deleveraging explains at most a quarter of the drop in employment during

the acute phase of the crisis. This result reflects the gradual nature of household deleveraging

4



which leads to a gradual decline in the natural rate.

The results are different when we consider the period 2007 to 2012. Since household debt fell

more over this longer period, so did the natural rate, and the model predicts a more important

role for credit shocks. In the data, employment was 6.2% lower by the end of 2012 compared to

2007. Under the two bounds, employment declined by 1.3% and 4.8%, respectively. The model

therefore predicts that credit shocks greatly delayed the recovery.6 Our results are robust

to a number of perturbations, including adding a construction sector, allowing for fiscal policy,

lowering the duration of mortgage contracts, explicitly modeling mortgage default, credit supply

shocks and heterogeneity in state responses to credit shocks.

Our goal in this paper is to quantify the role of credit shocks in accounting for regional

and aggregate employment during the Great Recession. To keep our analysis as transparent

as possible, we focus on the household leverage view of the Great Recession and we do not

model explicitly the other forces that arguably played an important role, such as bank and

firm-level financing constraints, changes in uncertainty, demographics, increase in markups and

risk premia. These factors are instead captured by our rich set of exogenous shocks. A limitation

of our approach is that household credit may interact with a number of these forces in important

ways.7

Related Work. Our paper is related to Eggertsson and Krugman (2012) and Guerrieri and

Lorenzoni (2017) who also study the responses of an economy to a household credit crunch.

While they study a closed-economy setting, our model is that of a monetary union composed of

a large number of regions. Moreover, our focus is on estimating the model using state-level and

aggregate data. Since we found that one-asset models cannot account for the comovement be-

tween state-level consumption and household debt, we explicitly introduce liquidity constraints

which make it optimal for households to simultaneously borrow and save in the liquid asset, an

ingredient which we argue is critical to match the regional data.

Our use of regional data to estimate the model is related to the work of Beraja et al. (2019).

These researchers apply a limited-information approach (GMM) to estimate the degree of wage

stickiness using state-level data, and then use those estimates as a prior in a full-information

estimation with only aggregate data. In contrast, we develop a methodology that allows one to

simultaneously use regional and aggregate data in a full-information approach, despite the large

6See the literature on the slow recovery discussed by Fernald et al. (2017).
7For example, a tightening of household credit that depresses income and home prices may trigger a wave of

default that reduces the net worth of financial intermediaries. See Faria-e-Castro (2018) for such a model.

5



number of state variables and non-linearities associated with the ZLB. This methodology can be

fruitfully applied to other applications. Our emphasis on cross-sectional evidence is also shared

by the work of Nakamura and Steinsson (2014). Finally, our work is related to the literature

on financial intermediation, originating with Bernanke and Gertler (1989); Kiyotaki and Moore

(1997); Bernanke et al. (1999) and more recently Mendoza (2010); Gertler and Karadi (2011);

Gilchrist and Zakraǰsek (2012).8

2 Model

We first describe the model economy. The economy consists of a continuum of ex-ante identical

islands of unit mass that belong to a monetary union and trade among themselves. Consumers

derive utility from a final good, leisure and housing. The final good is assembled using as

inputs traded and non-traded goods. We assume that producers of intermediate goods are

monopolistically competitive. Prices and wages are subject to Calvo adjustment frictions. Labor

is immobile across islands and the housing stock on each island is in fixed supply.

We explicitly model the distinction between liquid and illiquid assets on households’ balance

sheets. In contrast to Kaplan and Violante (2014) and much of the segmented asset markets

literature which assumes fixed costs of portfolio rebalancing, we follow instead an alternative

approach due to Lucas (1990). We assume that consumers allocate their wealth between liquid

and illiquid assets prior to the realization of an idiosyncratic preference shock. The more volatile

this shock is, the stronger the precautionary savings motive in liquid assets, and the larger the

response of consumption to credit shocks. Following Lucas (1990), we assume that consumers

belong to families that share idiosyncratic risks.

Households face shocks to their ability to tap home equity, which we refer to as credit

shocks. We also allow for shocks to the households’ rate of time preference, disutility from

work, preference for housing and productivity. Each shock has an island-specific and aggregate

component. We also assume aggregate shocks to the interest rate rule and to the aggregate

inflation equation. These additional shocks allow us to capture other channels that can explain

movements in macroeconomic aggregates.

8See also the work Lustig and Van Nieuwerburgh (2005); Garriga et al. (2019); Favilukis et al. (2017); Burnside
et al. (2016); Landvoigt et al. (2015) who study the determinants of house prices.
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2.1 Households

Securities. Households borrow using mortgages which are long-term perpetuities with coupon

payments that decay geometrically at a rate determined by a parameter γ. A seller of such a

security issues one unit at a price qt in period t and repays 1 unit of the good in period t + 1,

γ units in t + 2, γ2 in t + 3 and so on in perpetuity.9 The household borrows from perfectly

competitive financial intermediaries.

It is convenient to describe the outstanding mortgage debt of a household on island s by

recording the amount of coupon payments bt(s) it must make in period t. Letting lt(s) denote

the amount of newly issued mortgages in period t, the date t+ 1 coupon payments are

bt+1(s) =
∞∑
i=0

γilt−i(s) = lt(s) + γbt(s). (1)

Letting qt denote the economy-wide price of one claim to such a perpetuity, the value of a

household’s mortgage liabilities is bt(s)(1 + γqt), reflecting the amount the household owes in

coupon payments in period t and the market value of its outstanding debt. On the asset side,

we assume that households save in a one-period nominal security at a rate it.
10

Preferences. We introduce wage-setting frictions by assuming that households are organized

in unions that set wages. We assume perfect risk-sharing across households that belong to dif-

ferent labor unions on a given island. Because of separability in preferences, risk-sharing implies

that all households on an island make identical consumption, housing and savings choices, even

though their labor supply differs depending on when the union they belong to last reset its

wage. The preferences of a household on island s who belongs to a labor union ι are

E0

∞∑
t=0

(
t−1∏
τ=0

βτ (s)

)[∫ 1

0

vit(ι, s) log cit(ι, s)di+ ηht (s) log ht(ι, s)−
ηnt (s)

1 + ν
nt(ι, s)

1+ν

]
, (2)

where cit(ι, s) denotes the consumption of a member i of household (ι, s), ht(ι, s) denotes the

total amount of housing owned by that household and nt(ι, s) denote the labor it supplies.

The shifters ηht (s) and ηnt (s) determine the preference for housing and the disutility from work,

while βt(s) is the household’s one-period ahead discount factor. We assume that each of these

preference shifters have an island-specific and aggregate component, all of which follow AR(1)

processes with independent Gaussian innovations.

9See Hatchondo and Martinez (2009) and Arellano and Ramanarayanan (2012) who describe the properties
of these securities in more detail.

10Since we solve the model using first-order perturbation methods, the assumption that assets have a different
maturity structure than liabilities is inconsequential and we only use it to simplify the notation.
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The term vit(ι, s) ≥ 1 is specific to each consumer i and denotes an idiosyncratic taste shifter,

which is an i.i.d random variable drawn from a Pareto distribution over [1,∞)

Pr(vit ≤ v) = F (v) = 1− v−α. (3)

The parameter α > 1 determines the amount of uncertainty about v. A lower α implies more

uncertainty. From now on we drop the dependence on ι for notational simplicity.

Budget and Credit Constraints. Let xt(s) denote the total amount of funds the household

transfers to its members. We assume that xt(s) is chosen prior to the realization of the idiosyn-

cratic preference shock vit(s). Since individual members are ex-ante identical and of mass 1,

xt(s) also represents the amount of funds received by any individual member. We assume a

liquidity constraint which limits each member’s consumption by the amount of funds it has when

entering the goods market:

pt(s)cit(s) ≤ xt(s), (4)

where pt(s) is the price of the final good on island s. The budget constraint is

xt(s) + et(s)(ht+1(s)− ht(s)) = wt(s)nt(s) + qtlt(s)− bt(s) + (1 + it−1)at(s) + Tt(s), (5)

where et(s) is the price of housing, wt(s) is the wage rate the household faces, bt(s) are the

coupon payments on outstanding mortgage debt, at(s) are the liquid assets it enters the period

with and Tt(s) collects the profits households earn from their ownership of intermediate goods

firms, transfers from the government aimed at correcting the steady state markup distortion, as

well as the transfers stemming from the risk-sharing arrangement. We assume that households

on island s exclusively own firms on that island.

The household also faces a borrowing constraint which limits its ability to issue new loans:

qtlt(s) ≤ mt(s)et(s)ht+1(s), (6)

where the credit limit mt(s) evolves as the product of an island-specific and aggregate compo-

nent, both of which follow an AR(1) process.

We introduce housing preference shocks to capture movements in house prices that are

otherwise difficult to rationalize.11 Because housing is separable in the utility function and the

housing stock is in fixed supply, movements in house prices only affect equilibrium allocations

via their impact on the households’ ability to borrow.

11See Kiyotaki et al. (2011) for an illustration of the problem and Favilukis et al. (2017), Garriga et al. (2019),
and Kaplan et al. (2020) for approaches to resolve it. We think of preference shocks as a parsimonious way of
capturing changes in risk premia or beliefs that trigger changes in house prices in these richer models.
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Figure 2: Timing of the Model

Savings. A household’s savings are the unspent funds of its shoppers in the goods market.

The total amount of liquid assets the household has at the end of the shopping period is

at+1(s) =

(
xt(s)− pt(s)

∫ 1

0

cit(s)di

)
. (7)

These resources are deposited with financial intermediaries and earn the nominal interest rate

it.

Our model is reminiscent of cash-in-advance models, though there are several important

differences. First, we assume that the household can access its date t labor income wt(s)nt(s)

immediately. Second, we allow agents to save in interest-bearing assets at the conclusion of

their shopping period. The only distortion we introduce is that arising from the household’s

inability to smooth the marginal utility of consumption across its members within a period.

Timing. Figure 2 summarizes our timing assumptions. The household’s portfolio composition

is described by the liquid assets at(s), housing ht(s) and mortgage obligations bt(s). All shocks

– except vit(s) – are realized at the beginning of the period. The household then chooses how

much to work nt(s), its housing ht+1(s), borrowing bt+1(s), and transfers xt(s). The idiosyncratic

preference shocks vit(s) are then realized and individual members choose consumption cit(s).

All unspent funds at+1(s) are then saved in the liquid asset.

9



2.2 Optimal Savings Choice

Let λt(s) denote the multiplier on the household’s budget constraint (5) and ξit(s) denote the

multiplier on the liquidity constraint (4). The optimal choice of xt(s) satisfies

λt(s) = βt(s)(1 + it)Etλt+1(s) +

∫ 1

0

ξit(s)di. (8)

The transfer xt(s) is valued at λt(s), the shadow value of wealth. Since unspent funds can be

saved at the conclusion of the shopping period, they are valued at βt(s)(1 + it)Etλt+1(s). The

last term captures the liquidity services provided by xt(s), namely the average multiplier on the

liquidity constraint of individual members.

Optimal consumption spending is equal to

pt(s)cit(s) = min

[
vit (s)

βt(s) (1 + it)Etλt+1 (s)
, xt(s)

]
(9)

and the multiplier on the liquidity constraint is

ξit (s) = max

[
0,

vit (s)

xt (s)
− βt(s) (1 + it)Etλt+1 (s)

]
. (10)

Integrating (10) across all members of a given household implies that∫ 1

0

ξit (s) di =
1

α− 1
xt (s)−α [βt(s) (1 + it)Etλt+1(s)]1−α . (11)

Let

∆t(s) ≡
λt (s)

(1 + it)βt(s)Etλt+1(s)
− 1 (12)

denote the wedge between the household’s rate of time preference and the return on the liquid

asset. Combining (8) and (11) allows us to express transfers as a decreasing function of ∆t(s):

xt (s) =
1

βt(s) (1 + it)Etλt+1 (s)
[(α− 1) ∆t(s)]

− 1
α . (13)

Since liquid savings are equal to the amount of unspent funds in the goods market, at+1(s) =

xt(s)− pt(s)
∫
ct(s)di, they can be also expressed as a decreasing function of the wedge:

at+1(s)

pt(s)ct(s)
=

(
α

α− 1
[(α− 1)∆t(s)]

1
α −∆t(s)

)−1

− 1. (14)

To understand this expression, note that when ∆t(s) is high, the household is relatively

impatient. Idiosyncratic taste shocks generate a precautionary savings motive, in addition to

the intertemporal substitution motive. When uncertainty about taste shocks is high (α is low),

the precautionary motive dominates so savings are relatively insensitive to the wedge ∆t(s). In

10



contrast, when the uncertainty about taste shocks is low (α is high), the precautionary motive

is weak and savings are sensitive to ∆t(s). As α → ∞, the precautionary motive disappears

and the supply of liquid assets is infinitely elastic.

The assumption that taste shocks are Pareto distributed, or that idiosyncratic uncertainty

takes the form of preference, as opposed to income or expense shocks, is not critical to our

arguments. In the Appendix we consider alternative types of shocks. Although these alternatives

are not as tractable as our baseline formulation, their qualitative implications are similar.

2.3 Optimal Debt and Housing Choice

We next discuss the household’s demand for mortgage debt and housing. Let

Rt+1 =
1 + γqt+1

qt
(15)

denote the one-period return on mortgages. The first-order condition for bt+1(s) is

λt(s) = βt(s)Etλt+1(s)Rt+1 + µt(s)− γβt(s)Etµt+1(s)
qt+1

qt
, (16)

where µt(s) is the multiplier on the borrowing constraint (6). The first-order condition for

housing is

et(s)λt(s)− βt(s)Etλt+1(s)et+1(s) = βt(s)Et
ηht+1(s)

ht+1(s)
+ µt(s)mt(s)et(s). (17)

The left hand side is the user cost of housing. The right hand side adds the marginal utility of

housing services to the collateral value of housing.

2.4 Technology

We next discuss the assumptions we make on the technology with which final and intermediate

goods are produced.

Final Goods Producers. Final goods producers on island s produce yt(s) units of the final

good using yNt (s) units of non-tradable goods produced locally and yMt (s) units of imported

goods. Imported and non-tradable goods are combined using a CES aggregator with elasticity

of substitution σ,

yt(s) =
(
ω

1
σ yNt (s)

σ−1
σ + (1− ω)

1
σ yMt (s)

σ−1
σ

) σ
σ−1

, (18)

where ω determines the share of non-traded goods. The imported good is a CES composite of

imports from all islands with elasticity of substitution κ:

yMt (s) =

(∫ 1

0

yMt (s, s′)
κ−1
κ ds′

) κ
κ−1

. (19)
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We assume that there are no trade costs, so all islands face the same import price index

pTt =

(∫ 1

0

pTt (s′)1−κds′
) 1

1−κ

,

where pTt (s) is the price of imports from island s. Letting pNt (s) denote the price of non-tradable

goods, the final goods price on an island is

pt(s) =
(
ωpNt (s)1−σ + (1− ω)

(
pTt
)1−σ

) 1
1−σ

. (20)

The demand for non-tradable goods produced on an island is

yNt (s) = ω

(
pNt (s)

pt(s)

)−σ
yt(s), (21)

while demand for its exports is the sum of purchases from all islands:

yXt (s) = (1− ω)

(
pTt (s)

pTt

)−κ(∫ 1

0

(
pTt
pt(s′)

)−σ
yt(s

′)ds′

)
. (22)

Intermediate Goods Producers. Tradable and non-tradable goods are themselves CES

composites of varieties of differentiated intermediate inputs with an elasticity of substitution ϑ.

Technology is linear in labor and subject to a productivity disturbance zt(s) that is common to

both the tradable and non-tradable sectors:

yjkt(s) = zt(s)n
j
kt(s), for j ∈ {X,N} .

Producers of intermediate goods are subject to Calvo pricing frictions and can only reset prices

with probability 1−θp each period. A firm that resets its price maximizes the present discounted

flow of profits weighted by the probability that the price it chooses at t will still be in effect at

any particular date. The government levies a production subsidy τp = ϑ−1
ϑ

which eliminates the

steady state markup distortion and is financed with lump-sum taxes.

Wage Setting. Individual households are organized in unions that supply differentiated vari-

eties of labor with elasticity of substitution ψ. Unions reset their wages with probability 1− θw
each period. We assume that the government offsets the steady-state wage markup distortion

using a subsidy τw = ψ−1
ψ

financed with lump-sum transfers.

12



2.5 Monetary Policy

Let yt =
∫ 1

0
pt(s)yt(s)/pt ds be total output in this economy, pt =

∫ 1

0
pt(s)ds be the aggregate

price level and πt = pt/pt−1 denote the rate of inflation. Aggregating the prices of individual

producers in all islands implies, up to a first-order approximation,

log(πt/π̄) = β̄Et log(πt+1/π̄) +
(1− θp)(1− θpβ̄)

θp
(log(wt)− log(zt)) + ηπt ,

where wt =
∫
wt(s)ds is the average wage in the economy, ηπt is an AR(1) disturbance to

individual firms’ desired markups, common to all islands, β̄ is the steady state discount factor

and π̄ is the steady-state rate of inflation.12

We follow Smets and Wouters (2007) and assume that monetary policy follows a Taylor rule

when the ZLB does not bind:

1 + it = (1 + it−1)αr
[
(1 + ı̄) (πt/π̄)απ ŷ

αy
t

]1−αr
(ŷt/ŷt−1)αx ηit,

where ῑ is the steady state nominal interest rate, ηit is an i.i.d. monetary policy shock, αr

determines the persistence and απ, αy and αx determine the extent to which monetary policy

responds to deviations of inflation from the target π̄, the output gap ŷt, and the growth rate of

the output gap, respectively. The output gap is the ratio of actual output to its flexible price

level, ŷt = yt/y
∗
t . When the ZLB binds, the Fed sets it = 0.

The Fed may set an interest rate of zero not only when the ZLB binds, but also when it

follows its forward guidance. In particular, we assume that in periods in which the ZLB binds

the Fed can commit to keeping it at zero for longer than the duration prescribed by the Taylor

rule. We thus implicitly assume that the Fed can manipulate expectations of how the path of

interest rates evolves when the economy hits the ZLB, as in Eggertsson and Woodford (2003)

and Werning (2011). In our estimation we use survey data from the New York Federal Reserve

to discipline the expected duration of the zero interest rate regime between 2009 and 2015.

2.6 Asset Market

The monetary union is closed so savings in the liquid asset equal aggregate mortgage debt:∫ 1

0

at+1(s)ds =

∫ 1

0

bt+1(s)ds. (23)

12We assume in our quantitative analysis that π̄ is equal to 2% per year. We implicitly eliminate the steady-
state costs of positive inflation by assuming that all prices and wages are automatically indexed to π̄. See Coibion
and Gorodnichenko (2015) and Blanco (2019) who study the size of these costs in the absence of indexation.
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In contrast, individual states can run current account imbalances. An island’s net foreign asset

position evolves over time according to

at+1(s)− qtbt+1(s) = (1 + it−1)at(s)− (1 + γqt)bt(s) + pTt (s)yXt (s)− pTt yMt (s).

Perfectly competitive risk-neutral financial intermediaries borrow liquid assets from house-

holds and lend in the mortgage market. Perfect competition implies that the expected return

to holding mortgages is equal to the interest rate on the liquid asset:

EtRt+1 = 1 + it.

We next discuss the role of liquidity constraints in determining the equilibrium interest

rate in the steady state of the model. Recall that the household’s liquid savings are given

by (14). In steady state the wedge between the discount rate and the interest rate is equal to

∆ = 1
β̄
/1+i

π̄
−1 ≈ ρ−r, where ρ = 1/β̄−1 is the discount rate and r = 1+i

π̄
−1 is the real interest

rate. The upward-sloping curves in Figure 3 illustrate the households’ optimal savings choices

as a function of the real interest rate. The two panels of the Figure correspond to two scenarios,

one with a relatively high idiosyncratic uncertainty (low α), and another with a relatively low

uncertainty (high α).

To derive the demand for assets, we note that the borrowing limit binds at all times. This is

because taste shocks are unbounded, which implies that the multiplier on the liquidity constraint

ξit(s) is positive for a positive mass of household members. A comparison of (8) and (16),

together with the no-arbitrage condition EtRt+1 = 1 + it, implies that the multiplier on the

borrowing constraint µt(s) is also positive. Intuitively, since the household anticipates that a

fraction of its members will end up liquidity constrained, and since the expected return on the

mortgage is equal to the liquid interest rate, it borrows as much as possible. The result that all

households are constrained, though stark, is consistent with Boar et al. (2020) who find that

four-fifths of homeowners are constrained.

Since the credit limit binds, mortgage debt is proportional to the value of houses,

qb =
m̄

1− γ
eh =

m̄

1− γ
η̄h

λ

1(
1− m̄

1−βγ

)
ρ+ m̄

1−βγ r
, (24)

where the last equation follows from the Euler equation for housing (17). The value of housing

is given by the marginal utility of housing, η̄h/λ, discounted by a weighted average of the rate

of time preference ρ and the interest rate r, with a weight that depends on how much the

household can borrow. As long as ρ > r, an increase in the loan-to-value ratio m̄ reduces the

effective discount rate, raising house prices.
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Figure 3: Equilibrium Real Interest Rate in Steady State

The downward sloping curve in Figure 3 super-imposes the demand for mortgages (24) and

illustrates how the equilibrium interest rate is determined in steady state. A tightening of the

debt limit mechanically reduces the demand for debt, thus reducing the equilibrium interest rate.

The extent to which the equilibrium interest rate falls depends on the degree of idiosyncratic

uncertainty. As the two panels of the figure show, the larger the uncertainty, the less elastic the

supply of liquid assets, and therefore the larger the reduction in the equilibrium interest rate.

2.7 The Workings of the Model

We next provide some intuition for how the model works. The key parameters in the model

are those that determine the degree of idiosyncratic uncertainty, α, as well as those governing

the degree of price and wage stickiness, θp and θw. We illustrate the role of each of these sets

of parameters by perturbing them and describing the impulse responses to shocks to the credit

limit mt(s).

Impulse Response to a State-Level Credit Shock. Figure 4 reports impulse responses to

a state-level credit shock. To build intuition, we first report, in the left column, the responses

under flexible prices and wages. Panel A of the figure shows that the shock leads to a gradual

decline in debt because of the long-term nature of mortgage contracts. Households cannot

borrow as much as they used to, and they respond in three ways. They reduce their liquid asset

holdings, which limits their ability to smooth idiosyncratic shocks. They therefore also reduce

consumption and increase their labor supply. Prices and wages fall, employment rises, and the
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island runs a current account surplus.

The middle column of Figure 4 illustrates how price rigidities affect the response of an island

to a credit shock. We refer to this parameterization as the “Baseline” because it relies on the

parameters from our estimation below. The main impact of wage and price rigidities is to reverse

the response of employment. Price stickiness limits the increase in exports so the increase in

the current account takes place via a compression of domestic demand. The fall in employment

reduces income and consumption further. Wage rigidities act as a tax on labor supply, while

price rigidities increase firms’ markups, and both effects reduce employment.13

The last column of Figure 4 illustrates how liquidity constraints and liquidity demand affect

the response of an island to a credit shock. We reduce the volatility of idiosyncratic shocks

by increasing the parameter α. With less need to smooth large liquidity risks, households are

more willing to reduce their liquid asset holdings in response to a tightening of their borrowing

limit. As a result, consumption barely needs to fall and the impact on employment and wages

is small. These effects are capture in equation (14) which shows that liquid asset holdings

are more sensitive to the wedge between the discount rate and the interest rate when α is

high. The discount rate λt(s)
βt(s)Etλt+1(s)

increases in response to the credit tightening, while the

interest rate is constant since the island is atomistic. When idiosyncratic uncertainty is low,

it is relatively costless to reduce liquid asset holdings. Both sides of the household’s balance

sheet thus contract, with little impact on other variables. In this case credit is a veil with

little impact on macroeconomic aggregates. In contrast, when idiosyncratic uncertainty is high,

reducing liquid assets is costly. Households therefore find it optimal to respond to the credit

tightening by cutting consumption.

A tightening of debt constraints thus distorts allocations in two ways: it prevents households

from smoothing the marginal utility of consumption both across members as well as across time.

Households face a tradeoff: they can respond to a tightening of credit by either reducing overall

consumption, distorting the intertemporal allocations, or by reducing liquid assets, distorting

the intrafamily allocations. The more dispersed idiosyncratic shocks are, the more the household

reduces the overall level of consumption to limit variation in the marginal utility of consumption

across its members.

Impulse Response to an Aggregate Credit Shock. To understand the effect of an ag-

gregate credit shock, we note first that the shadow value of wealth λt is approximately inversely

13See Kehoe et al. (2016) for cross-sectional evidence from the U.S. Great Recession that both of these margins
account for the drop in employment in states that have experience the largest declines in household credit.
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Figure 4: Impulse Response to State-Level Credit Shock
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Figure 5: Impulse Response to an Aggregate Credit Shock

proportional to nominal consumption spending, λt ∼ 1/ptct. Up to a first-order approximation,

the Euler equation that determines the growth rate of λt is given by

(1 + ∆t)(1 + it)βEt
λt+1

λt
= 1.

where (
α

α− 1
[(α− 1)∆t]

1
α −∆t

)−1

− 1 =
qtbt+1

yt
(25)

follows from asset market clearing. A tightening of debt limits reduces the right-hand side of

(25) and increases the wedge ∆t, thus reducing the natural rate.

The first column of Figure 5 shows the response to an aggregate credit shock in an economy

with flexible prices. The shock reduces the equilibrium interest rate (Panel A), and has a

negligible effect on employment (Panel D). Employment falls slightly because a tightening of

credit magnifies the consumption-leisure distortions, as in cash-in-advance economies. As in

those economies, the impact of these distortions is small.14

We next turn to our baseline parameterization with sticky prices. As is well understood,

the extent to which changes in the natural rate affect macroeconomic aggregates depends on

the stance of monetary policy. We illustrate this point in the second column of Figure 5 by

contrasting the responses to the same credit shock under two scenarios: one in which we impose

14See Cooley and Hansen (1989).
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the ZLB and another one in which we do not. Clearly, the ZLB magnifies the reduction in

employment because it prevents the monetary authority from accommodating the decline in

the natural rate.

As in the case of island-level responses, the volatility of idiosyncratic shocks is critical in

determining how the economy reacts to a credit shock. As the last column of Figure 5 shows,

if idiosyncratic uncertainty is low, interest rates and employment fall little. In this case liquid

asset holdings are sensitive to interest rates, so a small reduction in the equilibrium rate is

required to clear the asset market. The natural rate of interest thus falls little, leading to a

negligible impact on macroeconomic outcomes.

This exercise shows that the parameters that shape the responses of island-level variables to

credit shocks also determine the aggregate-level responses. These parameters govern the slopes

of two curves: that of the Phillips curve that relates inflation to changes in marginal costs and

that of the savings curve which relates liquid asset holdings to the gap between the discount

rate and the interest rate. Since these are both functions of the primitive parameters, they

are identical in the aggregate and at the state level. In contrast, the equilibrium responses

of, say, employment to credit shocks are determined by factors such as a state’s openness to

trade and the stance of monetary policy and one cannot extrapolate state-level elasticities to

draw conclusions about the aggregate. Indeed, if monetary policy were to perfectly track the

natural rate, it would eliminate employment fluctuations in the aggregate, yet would be unable

to respond to disturbances on an individual island. We can therefore use state-level data to

identify the parameters that determine the slopes of these curves, but need to use the structure

of the model to identify the impact of credit shocks in the aggregate.

Our modeling of how households allocate their wealth between housing, liquid assets and

mortgage debt is purposefully simple and designed to capture aggregate comovements, not the

behavior of individual households. Just as the Calvo pricing protocol is a crude description

of how individual firms price, our family construct is a crude description of how individual

households save. Fully micro-founding household portfolio choices would require a rich three-

state model of the housing market similar to that studied by Kaplan et al. (2020) and Boar et

al. (2020). Such a model would entail significant micro-level non-convexities that would make

full-information estimation infeasible. Since our goal is to use state-level data to isolate the

impact of monetary policy in stabilizing the response of real variables to credit shocks, our

conjecture is that our simplification provides a useful approximation, analogous to the Calvo

pricing approach in modeling the dynamics of inflation.
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2.8 Solution Method

To use Bayesian techniques in estimation, we need an efficient solution method. We thus

use a piece-wise linear approximation method developed by Eggertsson and Woodford (2003),

Guerrieri and Iacoviello (2015) and Jones (2017) to deal with the ZLB. We next describe the

method, which we adapt for our application combining state-level and aggregate variables.

The linearized system of equations defining the equilibrium of the model is

Axt(s) = Bxt−1(s) + DEtxt+1(s) + Fεt(s) + Ārxt + B̄rxt−1 + D̄rEtxt+1 + F̄rεt, (26)

where xt(s) is a vector that collects state-level variables, εt(s) are the state-level shocks, xt are

the aggregate variables, εt are the aggregate shocks, and the bold matrices are functions of the

parameters of the model.

The economy may be in one of two regimes. We let r = 0 correspond to periods when

the ZLB does not bind, and r = 1 to periods when it does. Because each individual island

is atomistic, whether the ZLB binds does not, up to a first-order approximation, affect the

dependence of an island’s variables on its own lagged or future variables, or its shocks. Thus

the matrices A, B, D, and F are not regime-dependent.

Integrating over the individual states under the normalization
∫
εt(s)ds = 0, and adding the

Taylor rule, we derive an expression that determines the dynamics of aggregate variables,

Arxt = Cr + Brxt−1 + DrEtxt+1 + Frεt, (27)

where xt collects all the aggregate variables,
∫

xt(s)ds, and the nominal interest rate it. Once

again, notice that the coefficient matrices depend on the monetary policy regime.

The algorithm is based on a piece-wise linear solution of the equilibrium conditions in the two

monetary policy regimes r = {0, 1}, under the assumption that agents observe all shocks in each

period, but believe that no other shocks are possible in the future. Under the regime when the

ZLB does not bind, we use standard methods to derive the time-invariant VAR representation

that describes the evolution of the aggregate variables

xt = J0 + Q0xt−1 + G0εt. (28)

When the ZLB binds, we iterate on the date T (xt−1, εt, ft) at which the ZLB will stop binding

conditional on no further aggregate shocks hitting the economy. Here ft encodes forward guid-

ance announcements, if any. For periods after T , the economy evolves following (28). Prior to

T , the solution of the model is

xt = Jt + Qtxt−1 + Gtεt, (29)
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where the reduced-form matrices are updated iteratively according to the following recursion

Qt =
[
A1 −D1Qt+1

]−1
B1

Jt =
[
A1 −D1Qt+1

]−1 (
C1 + D1Jt+1

)
(30)

Gt =
[
A1 −D1Qt+1

]−1
E1,

These recursions are the same as those in Guerrieri and Iacoviello (2015) and Kulish and Pagan

(2017). In short, we iterate backwards from the conjectured date of exit from the ZLB regime by

using the equilibrium conditions consistent with it = 0. Notice that by changing the structural

matrices corresponding to the regimes in (30) we allow for the possibility that a shock at date

t triggers the ZLB at some future period even though it does not bind at t. We iterate on the

conjectured date T until convergence.15

Having solved for the aggregate outcomes we then solve for the island-level variables,

xt(s) = Qxt−1(s) + Gεt(s)︸ ︷︷ ︸
state-level component

+ J̄t + Q̄txt−1 + Ḡtεt︸ ︷︷ ︸
aggregate component

. (31)

The matrices J̄t, Q̄t, and Ḡt encode how an island responds to aggregate-level variables and

vary over time because of the ZLB. In contrast, the matrices Q and G which determine how

an island’s variables depend on their own lags and island-specific shocks are time-invariant.

Intuitively, since each island is of measure zero, shocks to an individual island do not change

the expected date at which the ZLB will stop binding for the rest of the economy. Moreover,

agents on each island take aggregate prices, including the interest rate, as given. Therefore,

conditional on the aggregate state variables, the ZLB regime does not affect the evolution of

island-level relative variables. From the perspective of agents on a given island, the presence of

the ZLB acts like any other aggregate shock which, up to a first-order approximation, does not

change how that island responds to its own history of idiosyncratic shocks.

Equation (31) reveals that our model has a special structure. First, the mapping from state-

level histories of shocks to state-level outcomes is time-invariant and common to all states.

Second, the mapping from aggregate histories of shocks to state-level variables, though time-

varying, is also common to all states. We exploit this structure to construct the likelihood

function, as we describe below.

15See Kulish and Pagan (2017) and Jones (2017) for more details on the recursion underlying this solution.
Jones (2017) contrasts this method with fully non-linear ones in smaller scale models and shows that that the
piece-wise linear method we use here is accurate. Lepetyuk et al. (2017) contrast these perturbation-based
methods with fully non-linear projection methods in larger-scale models and reach similar conclusions regarding
their accuracy.
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3 Estimation

We next explain how we chose parameters for our model. We first discuss the parameters we

assign values to, and then the ones we estimate.

The parameters that we estimate are those that are critical in determining the model’s

responses to a credit shock: the degree of wage and price stickiness, θw and θp, as well as

the volatility of idiosyncratic taste shocks, α. We refer to these parameters as our structural

parameters. In addition, we estimate the AR(1) processes characterizing the island-specific and

aggregate components of the various shocks. We next describe the parameters we have assigned,

the construction of the likelihood function, and then our results.

3.1 Assigned Parameters

We report the parameter values we assign in Table 1. The period is one quarter. We assume

a Frisch elasticity of labor supply of 1/2. We set γ, the parameter governing the duration

of debt, to 0.985, so that the Macaulay duration of debt in our model is equal to that of

mortgage debt in the data, approximately 13 years.16 We follow the trade literature in setting

the weight on non-traded goods in an island’s consumption basket, ω, equal to 0.7; the elasticity

of substitution between tradable and non-tradable goods, σ, equal to 0.5; and the elasticity of

substitution between varieties of tradable goods produced in different islands, κ, equal to 4, the

estimate of Simonovska and Waugh (2014). We follow Christiano et al. (2005) in choosing ψ to

ensure a wage markup of 5%.17 We use the Justiniano et al. (2011) estimates of the parameters

characterizing the Taylor rule.

We pin down three additional parameters using steady state considerations. The steady

state discount factor β̄ is chosen so that the steady state real interest rate is equal to 2% per

year. The steady state weight of housing in preferences η̄h is chosen so that the aggregate

housing to (annual) income ratio is equal to 2.5, a number that we compute using the 2001

Survey of Consumer Finances (SCF). Finally, the steady state LTV ratio is chosen so that the

aggregate debt to housing ratio is equal to 0.29, a number once again computed from the SCF.

Since the debt constraint binds in the model, these two last two targets imply an aggregate

debt to (annual) income ratio of 2.5× 0.29 = 0.725.

16The Macaulay duration is the weighted average maturity of the flows, with weights given by the present
value of the flows accruing at each date. In our model with geometrically decaying perpetuities this duration is
given by (1 + r)/(1 + r − γ).

17We show in our Robustness section that our conclusions are not sensitive to alternative values of ψ.
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Table 1: Assigned Parameters

Parameter Value Description Source/Target

ν 2 Inverse labor supply elasticity
γ 0.985 Persistence coupon payments 13 year mortgage debt duration
ω 0.7 Weight on non-traded goods
σ 0.5 Elasticity traded/non-traded
κ 4 Elasticity traded goods Simonovska and Waugh (2014)
ψ 21 Elasticity labor aggregator Christiano et al. (2005)
αr 0.86 Taylor rule persistence Justiniano et al. (2011)
απ 1.71 Taylor coefficient inflation Justiniano et al. (2011)
αy 0.05 Taylor coefficient output Justiniano et al. (2011)
αx 0.21 Taylor coefficient output growth Justiniano et al. (2011)

Parameters chosen to match steady-state target

− ln(β) 2.46% Annual discount rate 2% real rate
η 0.084 Weight on housing Housing-to-income ratio of 2.5
m̄ 0.0044 Credit limit Debt-to-housing ratio of 0.29

3.2 Estimation Procedure

Our goal is to simultaneously use regional and aggregate data to estimate the model and identify

the impact of credit shocks on real activity. In contrast to Nakamura and Steinsson (2014) and

Beraja et al. (2019), who also use regional data to understand the effect of various shocks on

macroeconomic aggregates, our approach simultaneously uses state and aggregate-level data in a

full-information estimation. One important technical challenge we need to overcome in order to

compute the likelihood function is the presence of the occasionally binding ZLB, which renders

conventional methods infeasible due to the very large number of island-level state variables and

the resulting curse of dimensionality. We therefore exploit the special structure of our model and

develop an efficient algorithm that circumvents these difficulties. We first describe the details

of our approach, and then report our results.

3.2.1 The Data

Regional Data. We use a panel of employment, household spending, wages, household debt

and house prices in the cross-section of 51 U.S. states from 1999 to 2015. The household debt

information is from the FRB New York Consumer Credit Panel.18 Since the measure of debt

in the data is the book value of outstanding debt, we construct a corresponding series for our

18We include credit card debt, auto loans and student loans, in addition to mortgage debt in our measure of
household credit. Since mortgage debt makes up a large fraction of household debt, our results are virtually
unchanged when we only use mortgage debt in our estimation.
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model using

debtt(s) = γdebtt−1(s) + qtlt(s),

where qtlt(s) is the market value of mortgage debt issued in period t and γdebtt−1(s) is the

book value of outstanding debt. We found that our results are unchanged if we instead use the

market value of debt qtbt+1(s)to proxy for household credit in the data.

We use data on house prices from the FHFA, and data on employment, consumption expen-

ditures and wages from the BEA. Our measure of employment is the employment-population

ratio in a given state. Our measure of wages is total employee compensation divided by the

number of workers. Since we do not model the construction sector, we subtract construction

employment and compensation in computing measures of employment and wages.19

Aggregate Data. We use aggregate data on employment, household consumption expendi-

tures, wages, household debt, house prices, inflation and the Fed Funds rate from 1984 to 2015.

We construct this data in a similar way to the state-level data. An additional critical input in

the estimation is the sequence of expected durations of the ZLB between 2009 and 2015, which

we take from the Blue Chip Financial Forecasts survey from 2009 to 2010 and the New York

Federal Reserve’s Survey of Primary Dealers from 2011 to 2015.20

3.2.2 The Likelihood Function

The conventional approach to estimating the model would be to write down a likelihood function

that directly combines state and aggregate data. This approach is computationally infeasible

because of the non-linearity induced by the ZLB and the curse of dimensionality which arises

from our use of 51 regions, each of which has 11 individual state variables.

We thus use the structure of our model to formulate an alternative approach to constructing

the likelihood function, one that exploits relative variation across individual states’ outcomes.

Intuitively, our approach recognizes that, up to a first-order approximation, the difference be-

tween employment in, say, Nevada and in the aggregate is a linear function of the Nevada state

variables only. This observation allows us to separate the likelihood into state-level components

and an aggregate component.

To understand our approach, recall that the evolution of variables in any given state is given

19See our Robustness section for an extension that explicitly models the construction sector and uses data on
construction employment in estimation. Our results are robust to this modification.

20See the Appendix for a more detailed description of the data we use.
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by (31), which we reproduce here for convenience:

xt(s) = Qxt−1(s) + Gεt(s) + J̄t + Q̄txt−1 + Ḡtεt.

Since the last three reduced-form matrices are time-varying functions of the underlying struc-

tural parameters whenever the ZLB binds, computing them for each parameter draw in the

estimation is infeasible. The special structure of the model allows us, however, to write the

deviation of island-level variables from their economy-wide averages,

x̂t(s) = xt(s)−
∫

xt(s)ds, (32)

as a time-invariant function of island-level variables alone:

x̂t(s) = Qx̂t−1(s) + Gεt(s). (33)

This structure allows us to significantly speed up the computation of the likelihood function.

We therefore use the representation in (29) and (33) to estimate the model using state-level

and aggregate U.S. data. To do so, we first express each state’s observable variable as deviations

from its aggregate counterpart by subtracting a full set of time effects, one for each year and

each variable. We also subtract a state-specific fixed effect and time trend for each observable

since in our model all islands are ex-ante identical.21 Since the island-level shocks in (33)

are independent and do not affect aggregate outcomes, we can write the log-likelihood of the

model as the sum of each individual state’s likelihood, computed from (33) and the aggregate

likelihood, computed from (29):

logL =
51∑
s=1

ω̄(s) logL(s) + logLa,

where L(s) is the contribution to the likelihood of an individual state’s data, La is the contri-

bution to the likelihood of the aggregate data, and ω̄(s) is the relative weight of state s. This

additive structure follows from the block exogeneity implied by our representation (33) which

allows us to express the determinant of the variance-covariance matrix of the forecast errors as

the product of the determinants of the variance-covariance matrices of the individual states.

To see how we construct the likelihood for an individual state, denote by N̄ = 5 the number

of observable variables and T̄ = 17 (1999 to 2015) the number of years of data that are available.

With Gaussian errors, the log-likelihood function for any individual state is

logL(s) = −
(
N̄ T̄

2

)
log 2π − 1

2

T̄∑
t=1

log det St −
1

2

T̄∑
t=1

x̃′t(s)S
−1
t x̃t(s).

21In practice, subtracting the state-specific fixed effects only, as we have done in an earlier version of the
paper, does not change our substantive results.
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where x̃t(s) is the vector of forecast errors, calculated using the Kalman filter and the structural

matrices Q and G from (33), and St is the covariance matrix of x̃t(s). We compute the aggregate

likelihood component in a similar fashion, taking into account that the sequence of forecast

errors and their covariance matrices are functions of the underlying time-varying reduced-form

matrices Qt and Gt from (29) (see the Appendix for details).

To summarize, our estimation exploits the differential rise and fall of individual states’

spending, debt, wages, house prices and employment, in addition to the aggregate comovement

of these series, to identify the structural parameters of the model. Notice that by simultaneously

using state and aggregate data to construct the likelihood, our approach differs from that of

Beraja et al. (2019). These researchers first apply limited information methods (GMM) to

estimate the degree of wage stickiness using state-level data. They then use that estimate to

form a prior in a second step, which uses only aggregate data to form the likelihood function.

The state-level data is observed at an annual frequency, while the model is quarterly, so

we conduct a mixed-frequency estimation, by computing forecast errors every four quarters for

state-level variables. The aggregate data, in contrast, is observed quarterly and for a longer time-

period, from 1984 to 2015. To account for differences in the size of different states and ensure

that smaller states exert a relatively smaller influence on the shape of the likelihood, we weight

the likelihood contribution of each state by their 1999 population shares.22 In a robustness

exercise reported below, we also compute the likelihood without weighting individual states. In

our baseline estimation, we assign an equal weight to the aggregate likelihood and the combined

state-level likelihood.

3.3 Parameter Estimates

Table 2 reports moments of the prior and posterior distributions of the structural parameters

we estimate. We use diffuse priors. We find, consistent with the work of Del Negro et al. (2015),

that wages and prices are sticky, with a modal estimate of θp of 0.97 and a modal estimate of θw

of 0.86. As is well known, accounting for the stability of inflation around the Great Recession

requires a great deal of price stickiness. We show below that estimating the model using state-

level data alone implies a much lower degree of price stickiness, consistent with the evidence in

Beraja et al. (2019). We explore the implications of this alternative set of parameter estimates

in our Robustness section below.

The mean estimate of the Pareto tail parameter α is equal to 3.45, implying a 0.47% spread

22See Agostinelli and Greco (2012) who show that this simple weighting scheme preserves the asymptotic
properties of the true likelihood function.
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Table 2: Estimated Structural Parameters

Prior Posterior

Parameter Dist Median 10% 90% Mean 10% 90%

λp B 0.5 0.2 0.8 0.97 0.94 0.98
λw B 0.5 0.2 0.8 0.86 0.83 0.89
α N 2.5 1.2 3.8 3.45 3.01 3.90

between the subjective discount rate and the interest rate at the annual frequency. Notice that

this parameter is well identified with a relatively tight posterior distribution. The 10th and 90th

percentiles are 3.0 and 3.9, respectively. This estimate implies that the fraction of household

members who are liquidity constrained is relatively low, 0.3% in steady-state. Moreover, as we

show in the Appendix, the model’s implications for the marginal propensity to consume out of

a transitory income shock are also very similar to those of the frictionless model. In this sense,

our results do not rely on assuming severe liquidity constraints.

We report in the Appendix the posterior estimates of the parameters governing the persis-

tence and volatility of state and aggregate shocks, and the full time series of shocks.

3.4 Identification of α

We next provide intuition for how the key parameter α is identified from the comovement of

state-level household debt, consumption, and employment. Table 3 reports coefficient estimates

from univariate regressions of changes in employment and consumption on changes in household

debt in the boom (2002 to 2007) and the bust (2007 to 2010). As pointed out by Mian and Sufi

(2014), state-level data show a strong correlation between these variables. For example, as the

first column of the table shows, an increase in debt-to-income of 100 percent is associated with

a 7 percent increase in employment and 15 percent increase in consumption from 2002 to 2007.

We next discuss the model’s predictions for these comovements. We use our mean estimates

in Table 2 to simulate a large panel of states and run identical regressions in the model. As the

second column of Table 3 shows, our baseline model reproduces the correlations in the data very

well. Consider next what happens if we simulate data from the model using higher and lower

values of α. When idiosyncratic uncertainty is high (α = 2), employment and consumption

comove much more strongly with changes in household debt than in the data. For example, a

100 percent increase in household debt-to-income is associated with a 22 percent increase in em-

ployment and 31 percent increase in consumption. In contrast, when idiosyncratic uncertainty
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Table 3: Regressions with Simulated Panel Datasets From Model

Data Baseline α = 2† α = 10† α = 10‡

A. Dependent Variable: ∆ Debt. Boom, 2002 to 2007

∆ Employment 0.07 0.06 0.22 0.02 0.02
(0.01) (0.01) (0.01) (0.01) (0.01)

∆ Consumption 0.15 0.11 0.31 0.02 0.02
(0.03) (0.01) (0.01) (0.01) (0.01)

B. Dependent Variable: ∆ Debt. Bust, 2007 to 2010

∆ Employment 0.10 0.06 0.22 0.03 0.01
(0.01) (0.01) (0.01) (0.01) (0.01)

∆ Consumption 0.17 0.10 0.31 0.03 0.02
(0.02) (0.01) (0.01) (0.01) (0.01)

†: Other parameters as in baseline. ‡: Other parameters reestimated.

Standard errors in parentheses

is low (α = 10), employment and consumption comove little with changes in household debt.

For example, a 100 percent increase in household debt-to-income is associated with a 2 percent

increase in employment and consumption.

In the Appendix, we also report the predictions of our model for the comovement between

employment, consumption, and household debt for longer leads and lags using local projections.

We show that simulated series from the model with too high or too low values of α generate

impulse responses that greatly differ from those computed in the data. We also report in the

Appendix results from a GMM-based procedure which produces similar estimates.

3.5 Separating Credit Shocks from Other Household Demand Shocks

How does our framework identify the separate contribution of shocks that change household

credit limits from that of discount factor shocks, which also lead to comovements between

consumption and household savings? To see this, recall that we assume that there is no spread

between the rate at which households save in the liquid asset and the mortgage interest rate.

Since liquid assets provide liquidity services, agents find it optimal to always borrow up to

the limit.23 Thus, though both shocks to credit limits and discount factor shocks lead to

comovements between consumption and household net asset positions, only shocks to the credit

limit affect the amount households borrow. Discount factor shocks lead to changes in liquid

23We relax this assumption in the robustness section when studying a model with default and show that our
results are unchanged.
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asset holdings, but leave mortgage debt unchanged.

The result that all homeowners are against their borrowing limit is admittedly extreme, but

it is broadly consistent with the data. To see this, notice that the majority of household debt in

the data is mortgage debt, which is refinanced infrequently. The vast majority of households are

therefore against the limit implicitly built-in their mortgage contract, namely the requirement

that they make the minimum principal and interest payments on the mortgage. As is well-

known, most households in the data do not exceed these minimum payments. For example

Amromin et al. (2007) and Adelman et al. (2010) show that only approximately 15–20% of

borrowers have ever made mortgage payments greater than the minimum required ones. Boar

et al. (2020) use this and other evidence and a rich model of the housing market to show that

the majority of homeowners are indeed borrowing constrained.

Nevertheless, to the extent to which some shocks indeed lead unconstrained households to

cut the amount they borrow, say for precautionary reasons, our estimation will interpret them as

credit shocks. Our exercise thus allows one to disentangle the relative contribution of household

demand shocks that manifest themselves through changes in the amount borrowed, as opposed

to other shocks that manifest themselves through changes in liquid savings.

3.6 Variance Decompositions

To interpret the estimates of the persistence and volatility of shocks, we report in Table 4 the

theoretical forecast error variance decompositions of state and aggregate observables into the

various shocks at the infinite horizon.

Consider first Panel A of Table 4 which reports this variance decomposition for state-level

variables, expressed as deviations from their aggregate counterparts. State-level credit shocks

account for 7% of the variation of relative employment and 30% of the variation in relative

household spending. State-level productivity shocks account for about 10% of the variation

in relative employment and a negligible fraction of the volatility of consumption. Shocks to

the disutility from work account for about 71% of the volatility of employment and 35% of

the volatility of consumption. Finally, shocks to the individual states’ discount rates account

for 12% percent of the volatility of relative employment and 35% of the volatility of relative

consumption, while shocks to the preference for housing have a negligible impact on state-

level real variables. The variance decompositions for wages, household debt-to-income, and

house prices show that these series are explained by leisure shocks, credit shocks, and housing

preference shocks respectively. We also report in the Appendix the variance decompositions at
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Table 4: Unconditional Variance Decomposition, Infinite Horizon

Variable

Shock
Collateral Housing Productivity Leisure Discount Policy Markup

A. State-level

Spending 30.3 0.4 0.0 34.6 34.7 - -
Employment 7.1 0.1 9.6 71.1 12.2 - -
Wages 1.9 0.0 0.0 97.9 0.1 - -
Debt-to-income 98.8 1.1 0.0 0.1 0.0 - -
House prices 2.3 95.0 0.0 2.5 0.2 - -

B. Aggregate-level

Consumption 1.5 0.1 22.7 8.8 47.6 10.7 8.7
Employment 1.8 0.1 4.0 10.9 59.2 13.2 10.8
Wages 0.3 0.0 3.7 69.6 3.0 0.3 23.1
Debt-to-income 78.8 5.9 0.5 2.4 12.0 0.1 0.4
House prices 0.0 87.3 3.3 1.2 5.3 1.6 1.3
Fed Funds rate 3.4 0.3 11.2 2.6 76.5 3.6 2.2
Inflation 0.8 0.1 2.9 12.2 2.6 0.2 81.3

shorter horizons. At shorter horizons, productivity shocks are a more important determinant

of employment, while discount factor shocks are a more important determinant of relative

consumption fluctuations across states. For example, at a one-year horizon productivity shocks

account for 39% of the relative variation in employment, while discount factor shocks account

for 77% of the relative variation in consumption.

Consider next Panel B of Table 4 which reports a similar decomposition for aggregate vari-

ables. Unconditionally, absent the ZLB, household credit shocks account for only 1.5% and

1.8% of the volatility of aggregate employment and consumption, respectively. Intuitively,

credit shocks matter much more at the state-level than in the aggregate because individual

states are part of a monetary union and cannot use monetary policy to offset their effects. Pro-

ductivity shocks account for about 4% of the employment volatility and 23% of the volatility of

consumption. Discount rate shocks account for a substantial fraction of movements in employ-

ment and consumption, while shocks to the disutility from work or preference for housing have

little effect. Monetary policy shocks account for about 10% of the variation in employment and

consumption and a negligible amount of the variation in other observables. Consistent with the

variance decompositions obtained using the model of Smets and Wouters (2007), as reported

in the Appendix, we find that the behavior of inflation is mostly explained by markup shocks,
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while wages are accounted for by labor disutility shocks.

3.7 Additional Implications

We report in the Appendix our model’s ability to reproduce several additional variables that we

have not directly used in estimation. We find that most of the decline in state-level employment

was due to declines in non-tradable employment, consistent with Mian and Sufi. Our model

also reproduces well the medium term movements in mortgage rates.

4 Credit Shocks in the Great Recession

We next study the role of household credit shocks in shaping the dynamics of employment and

consumption in the cross-section and in the aggregate during the Great Recession. Recall that

in our model the credit limit always binds, so household credit fluctuates due to exogenous

changes in the credit limit mt(s), and house prices, et(s). The latter fluctuate mostly due

to shocks to the preference for housing. Since housing is in fixed supply and separable in

preferences, housing preference shocks only affect equilibrium outcomes through their effect on

the credit limit. We thus refer to both shocks to the credit limit mt(s) and housing preferences,

ηht (s), as credit shocks, though as the variance decompositions in Table 4 demonstrate, the bulk

of the movements in real variables are due to the changes in the credit limit mt(s).

We first show that state-level credit shocks account for a large fraction of the differential

rise and fall in state-level employment and consumption during the boom and the bust years.

Our findings thus reinforce the conclusions of Mian et al. (2013) and Mian and Sufi (2014) who

argue that household credit played an important role in accounting for the heterogeneity in

state-level outcomes during the Great Recession. We then study the aggregate implications of

credit shocks. We show that aggregate credit shocks alone generate a modest decline in the

natural interest rate during the Great Recession and are not sufficient to trigger the ZLB on

their own. Absent other shocks, aggregate credit shocks would therefore have had a relatively

small effect on employment. We finally study how the effect of credit shocks on employment is

magnified when additional shocks render monetary policy constrained, as was the case during

the Great Recession.

4.1 Role of Credit Shocks at the State Level

We report the effects of state-level credit shocks on employment and consumption in Figure 6.

The horizontal axes show the actual data we used to extract the state-level component of the
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Figure 6: Effect of Credit Shocks on State Employment and Consumption
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shocks. We construct a counterfactual series for each variable by shutting down all of the shocks

other than those to credit, and plot the changes in these series on the vertical axes. The solid

line in each of these plots is the 45 degree line.

Consider first the 2002 to 2007 period, which we label the boom. The upper panels of Fig-

ure 6 show that credit shocks account for a substantial fraction of the differential changes in

employment and consumption during the boom. The correlation between the change in the

counterfactual series driven by credit shocks only and the change in the data is 0.68 for em-

ployment and 0.58 for consumption. The slope coefficient of a regression of these counterfactual

changes against the data is 0.52 for employment and 0.30 for consumption. Credit shocks thus

account for about one-half of the relative movements in employment and one-third of the relative

movements in consumption across states during the boom.

The lower panels of Figure 6 illustrate the corresponding patterns during the 2007 to 2010

recession, which we term the bust. Credit shocks account for an even larger fraction of the

differential change in employment and consumption during the bust. The slope coefficients are

0.56 for employment and 0.50 for consumption, implying that credit shocks account for one-half

of the differential decline in employment and consumption across states. We emphasize that
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Table 5: Contribution of Individual Shocks to Observed Change

Credit Limit Housing Productivity Leisure Discount

∆ Employment
– 2002 to 2007 0.47 0.05 −0.09 −0.09 0.58
– 2007 to 2010 0.52 0.04 0.14 −0.08 0.38

∆ Consumption
– 2002 to 2007 0.27 0.03 0.00 −0.08 0.74
– 2007 to 2010 0.48 0.03 0.00 −0.03 0.55

these results are not simply an artefact of the modeling choices we have made, but rather a

result of the estimation and the path for shocks extracted by the Kalman smoother from the

data. If instead we used a higher value of α in simulating the model, credit shocks would have

had much smaller effects, as we report in our Robustness section.

Table 5 illustrates the role of all additional shocks in explaining the relative changes in

employment and consumption during these two periods. We use the Kalman smoother to extract

the shocks and construct counterfactual employment and consumption panels by turning on one

shock at a time. Table 5 reports the slope coefficients of the projection of the counterfactual

series on the actual data.24 In addition to the credit shocks, discount factor shocks account for

the bulk of the remaining fluctuations in employment and consumption. These shocks capture

other sources of state-level movements in consumption, such as perhaps heterogeneity in fiscal

transfers across states, expectations of future growth, precautionary savings motives, and other

factors. In our Robustness section, we show that explicitly introducing differential changes in

government spending across states reduces the contribution of discount factor shocks, but leaves

the contribution of credit shocks unchanged.

We next zoom in on several states and show in Figure 7 how the time-series of relative

employment is shaped by credit, discount factor, and other shocks. The top row of the figure

plots relative employment for two states – Arizona and Nevada – that experienced large changes

in credit and employment. The bottom row of the figure shows two contrasting states – Virginia

and Illinois – that experienced mild fluctuations. The figure reinforces the point that credit

shocks were an important driver of the relative change in employment across states over this

period. In the Appendix, we show similar decompositions for all states, along with the full time

series of shocks.

24These coefficients do not sum to one because part of the variation of the observable series is attributed to
initial conditions.
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Figure 7: State Level Decomposition, Employment: Four States

Our findings thus corroborate the conclusion of Mian and Sufi (2014) that credit shocks were

an important determinant of the variation in employment and consumption across U.S. regions

in the years before and after the Great Recession. Two caveats are in order. First, even though

in our model changes in household credit are driven by shocks to the credit limit, in reality a

tightening of household credit may have been induced by lower credit supply, as emphasized by

Justiniano et al. (2019). Our approach is unable to differentiate between these sources of the

decline in household leverage: changes in credit limits in our framework thus implicitly capture

both supply and demand-side considerations. What is critical for our study is the comovement

between changes in household credit and consumption, which our model reproduces well. We

show in our Robustness section that our results are robust to modeling changes in household

credit as arising from credit supply shocks.25

Second, our model attributes all relative changes in state-level variables to idiosyncratic

state-level shocks. In practice, as pointed out by Mian and Sufi (2014), an important source

of state-level variation was the asymmetry with which individual states responded to aggregate

25Additional factors that may have contributed to the observed correlation between changes in household
credit and real variables include wealth effects from changes in house prices, as in Berger et al. (2018), or a
precautionary motive associated with the rise in uncertainty in this period. Our focus on a representative agent
framework and our use of first-order solution methods implicitly abstracts from these effects.
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shocks. The approach we pursue is motivated by tractability considerations: if the matrices

J̄t, Q̄t and Ḡt of equation (31) that determine how an individual island responds to aggregate

shocks were state-specific, say due to heterogeneity in housing supply elasticities, the likelihood

function would not be additively separable into individual state-level likelihood contributions.

Our estimates of the state-level shocks should therefore be interpreted more broadly as capturing

not only state-specific idiosyncratic disturbances, but also heterogeneity in the extent to which

state-level variables responded to aggregate shocks. In our Robustness section, we relax the

assumption that all states react in an identical way to state and aggregate shocks by separating

states into three groups that differ in their housing supply elasticities. In this extension we

can only use state-level data to estimate the parameters, but find that our estimates of the key

structural parameters and the model’s implications for the relative importance of credit shocks

are similar to those in the baseline.

4.2 Role of Credit Shocks at the Aggregate Level

We next turn to discussing the model’s implications for the role of credit shocks in explaining

fluctuations in the aggregate. Figure 8 presents the dynamics of the key aggregate time series

during the 1995 to 2015 period in the data. We HP-filter the debt-to-income series and report

it as deviations from the trend in Panel A. Panel B reports the evolution of the Fed Funds Rate

and the implied natural rate predicted by the model. Panel C reports the data on employment,

measured as the total number of employees on non-farm payrolls, scaled by the U.S. popula-

tion and expressed as percent deviations from a linear trend. Panel D shows the time series

for inflation. We used these series, together with aggregate data on wages, house prices and

consumption, to extract the aggregate component of the exogenous shocks used in estimation.

We construct a counterfactual series for each of these variables by shutting down all shocks

other than credit shocks. Panel A of Figure 8 shows that credit shocks drive most of the

movements in household credit. As Panel B shows, however, credit shocks alone generate

modest movements in the natural rate of interest. Specifically, our estimates imply that the

natural rate declined from 4.7% at the beginning of 2007 to -1.4% by the end of 2012. Credit

shocks account for only one-tenth of this decline: the natural rate would have fallen from 2.4%

to 1.8% in the absence of other shocks.

Consider next how employment responds to credit shocks. As the lower-left panel of Fig-

ure 8 and Table 6 shows, the Great Recession was associated with a nearly 6.2% drop in the

employment-population ratio from 2007 to 2012. Credit shocks alone account for a modest 1.3%
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Figure 8: Effect of Credit Shocks Alone on Aggregate Variables

drop, one-fifth of the actual decline. Employment falls little because credit shocks generate a

small decline in the natural rate, insufficient to trigger the ZLB. Absent additional shocks mon-

etary policy is unconstrained and mimics the dynamics of the natural rate well, implying minor

movements in employment and inflation. As is well-understood, however, the ZLB brings about

important non-linearities in how aggregate variables respond to shocks. If household credit

shocks are accompanied, as they were in the data, by other shocks that reduce the Fed’s ability

to cut interest rates because of the ZLB, the resulting effects on output can be much greater.

How much greater?

Answering this question is challenging because of the Fed’s pursuit of forward guidance

policies. In our estimation we have taken the Fed’s forward guidance announcements as given,

by setting the expected ZLB duration each quarter equal to the expectations in the data. Since

these announcements were responding to the path of all shocks, including credit shocks, we

cannot isolate the effect of credit shocks alone without taking a stand on how forward guidance

would have been conducted absent such shocks. In short, the pursuit of forward guidance poses

an identification challenge, one of decomposing the expected ZLB durations into an endogenous

component due to shocks, and one due to forward guidance policies.26

We address this challenge by providing bounds on the role of credit shocks under two extreme

26See Jones (2017) for a more detailed discussion of this identification problem and a solution to it.
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Figure 9: Effect of Credit Shocks on Aggregate Employment

sets of assumptions. The lower bound discussed above is that arising in the absence of the ZLB.

We compute the upper bound by considering a counterfactual experiment in which the Fed does

not pursue forward guidance. This is an upper bound because the Fed provides no additional

monetary stimulus once interest rates hit zero. We compute this upper bound by first calculating

two counterfactual series shown in Panel A of Figure 9. The dotted line shows that the recession

would have been twice more severe in the absence of forward guidance. The dashed line turns off

the credit shocks and computes the impact of all other shocks on employment. The difference

between these series provides a measure of how credit shocks would have shaped employment

outcomes in the absence of forward guidance. We plot this difference as the dotted line in Panel

B of Figure 9 and summarize it in the last column of Table 6.

As the table shows, even under the extreme assumption of no forward guidance, credit shocks

would have caused a modest 1.7% drop in employment from 2007 to 2010, one-fifth of the 7.1%

decline in the data. In contrast, the contribution of credit shocks to employment is substantially

larger by the end of 2012. Credit shocks would have generated a 4.8% drop in employment from

2007 to 2012 in the absence of forward guidance, three-fifths of the actual drop.

Credit shocks contribute little to employment at the onset of the recession because they are

relatively modest initially, reflecting the gradual adjustment of household debt in the first years

of the recession. For example, household debt-to-income fell by only 0.19 from 2007 to 2010. In

contrast, it experienced a much larger 0.57 drop from 2007 to 2012, leading to a larger decline in

the natural rate of interest. We thus conclude that credit shocks may have played a substantial

role in delaying the recovery in the aftermath of the recession, but had a modest impact in the

years immediately following 2007.

To summarize, we find that credit shocks account for a large fraction of the relative variability

in consumption and employment across U.S. states, but had a modest impact in the first few
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Table 6: Aggregate Effects of Credit Shocks in the Bust

Credit Shocks Only

Model and Data No ZLB No FG

2007Q1 to 2010Q1
– ∆ HH Debt to Income −0.19 −0.24 −0.20
– ∆ Employment, % −7.09 −0.47 −1.72

2007Q1 to 2012Q4
– ∆ HH Debt to Income −0.57 −0.63 −0.57
– ∆ Employment, % −6.20 −1.34 −4.76

years of the Great Recession. Does this result reflect differences in how credit shocks are

transmitted to employment in the cross-section as opposed to the aggregate, or differences in

the size of these shocks? We answer this question in Tables 6 and 7, in which we compare

the response of employment to credit shocks in the aggregate and in two states – Arizona and

Nevada – that have experienced relatively large boom and bust cycles in credit and employment.

Consider first Arizona. As Table 7 shows, this state experienced a 0.95 drop in the relative

debt-to-income ratio from 2007 to 2010, and an even larger 1.6 drop from 2007 to 2012. This

decline was much larger than the corresponding decline in the aggregate debt-to-income ratio

and led to a sizable drop in relative employment. As the third column of the table shows, credit

shocks generate a 3.1 percent drop in employment in Arizona from 2007 to 2010, and a 3.7

percent drop from 2007 to 2012. The patterns in Nevada are similar.

A comparison of the aggregate and state-level outcomes in Tables 6 and 7 reveals that credit

shocks generate larger movements in employment in the cross-section of U.S. states compared

to the aggregate because they were much larger. For example, from 2007 to 2013, the elasticity

of credit shocks to employment in the aggregate was 2.1% (-1.34%/-0.63) at our lower bound

estimate which assumes away the ZLB and 8.4% (-4.76%/-0.57) at our upper bound estimate

which imposes the ZLB and assumes away forward guidance. In contrast, the corresponding

ratio in Arizona is 2.2% (-3.73%/1.71), similar to the 2.1% in Nevada (-4.84%/-2.29). Thus, the

transmission of credit shocks to employment is similar in the cross-section as in the aggregate.

The larger contribution of credit shocks to cross-sectional variation reflects their larger size in

the cross-section.
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Table 7: Relative State-Level Effects of Credit Shocks in the Bust

Model and Data Credit Shocks Only

Arizona Nevada Arizona Nevada

2007 to 2010
– ∆ HH Debt to Income −0.95 −1.39 −1.01 −1.46
– ∆ Employment, % −3.11 −3.47 −3.13 −4.02

2007 to 2013
– ∆ HH Debt to Income −1.60 −2.15 −1.71 −2.29
– ∆ Employment, % −3.07 −2.41 −3.73 −4.84

5 Robustness

We conclude by considering a number of robustness checks. For brevity, here we only report the

various models’ implications for the importance of credit shocks in accounting for state-level

and aggregate movements in employment and consumption. In the Appendix we report the

parameter estimates. Table 8 reports the various models’ implications for the contribution of

state-level credit shocks to the relative changes of state-level employment and consumption.

Table 9 reports the models’ aggregate implications.

No Population Weighting. In this robustness exercise, we estimate the model’s parameters

without population-weighting the contribution of individual states to the likelihood function.

As Tables 8 and 9 show, our results are unaffected.

Remove 5 Largest States. One concern is that shocks to large states may have important

aggregate consequences, invalidating our approach of assuming independent state-level and ag-

gregate shocks. To address this concern, we examined the robustness of our results to removing

the five largest states from the estimation. Specifically, we re-estimated the model without data

on California, Texas, New York, Florida, and Illinois. As Tables 8 and 9 report, the estimated

model’s implications for the contribution of credit shocks at both the state and aggregate level

are similar to those in our baseline.

State Data Only. Here we estimate the model’s structural parameters using regional data

alone. We then fix these parameters and use the aggregate data to only estimate the parameters

of the aggregate shock processes. As we show in the Appendix, using state-level data only we

estimate a much lower degree of wage and price stickiness. Intuitively, as Beraja et al. (2019)
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Table 8: Contribution of State Credit Shocks to State-Level Variables

Boom, 2002 to 2007 Bust, 2007 to 2010

Employment Consumption Employment Consumption

Baseline Estimates 0.52 0.30 0.56 0.50
No Population Weighting 0.51 0.29 0.54 0.48
Remove 5 Largest States 0.63 0.36 0.60 0.55
State Data Only 0.25 0.23 0.39 0.40
High Uncertainty (α = 5) 0.10 0.05 0.09 0.08
Low Uncertainty (α = 2) 1.68 0.96 2.17 2.01
Lower Debt Duration (γ = 0.965) 0.63 0.35 0.64 0.59
One-period Debt (γ = 0) 0.38 0.21 0.30 0.28
Lower Labor Elasticity (ψ = 5) 0.57 0.33 0.63 0.56
Construction Sector 0.34 0.19 0.35 0.31
Heterogeneous Housing Elasticities 0.20 0.22 0.36 0.40
Government Spending 0.77 0.45 0.89 0.78
Option to Default 0.29 0.15 0.24 0.23
Estimated Taylor Rule 0.53 0.30 0.56 0.50

point out, state-level wages are quite volatile. In contrast, aggregate inflation has changed

little during the Great Recession. Reproducing the aggregate data thus requires a greater

degree of nominal stickiness, while reproducing the regional data requires a lower one. Our

baseline estimates that use both aggregate and regional data thus fall somewhere in between.

These results are consistent with the idea that prices respond more to large shocks than to

small shocks, as in economies with menu costs (Alvarez et al., 2016) and rational inattention

(Mackowiak and Wiederholt, 2009). We emphasize regional differences, but similar evidence

exists at the sectoral level (Boivin et al., 2009).

Table 8 shows that the model now predicts a smaller role for credit shocks in generating

fluctuations in employment and consumption across U.S. states. For example, credit shocks

account for 0.25 of the variability of employment during the boom and 0.39 during the recession.

A similar pattern emerges for consumption. Table 9 shows that the contribution of aggregate

credit shocks to aggregate employment is also smaller.

Aggregate Data Only. We also estimated the model with aggregate data only. Our estimate

of α was lower (3.1). As Table 9 shows, ignoring regional data increases the importance of credit

shocks for aggregate employment.
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Table 9: Contribution of Aggregate Credit Shocks to Aggregate Employment

2007Q1 to 2010Q1 2007Q1 to 2012Q4

No ZLB No FG No ZLB No FG

Baseline Estimates −0.47 −1.72 −1.34 −4.76
No Population Weighting −0.47 −1.67 −1.35 −4.62
Remove 5 Largest States −0.62 −2.03 −1.77 −5.07
State Data Only −0.31 −1.44 −0.63 −4.49
Aggregate Data Only −0.33 −2.61 −1.81 −7.00
High Uncertainty (α = 5) −0.08 −0.23 −0.20 −0.69
Low Uncertainty (α = 2) −1.55 −4.93 −5.83 −8.02
Lower Debt Duration (γ = 0.965) −1.10 −3.62 −3.33 −6.60
One-period Debt (γ = 0) −1.50 −1.38 −4.25 −7.59
Lower Labor Elasticity (ψ = 5) −0.52 −1.92 −1.52 −5.20
Construction Sector 0.32 −1.26 −0.14 −3.30
Government Spending −0.38 −1.95 −1.73 −3.07
Option to Default −0.60 −0.45 −1.38 −3.00
Estimated Taylor Rule −0.25 −1.00 −0.79 −3.28

High and Low Uncertainty. Here we illustrate the role played by the volatility of idiosyn-

cratic taste shocks. We first reduce the volatility of taste shocks by increasing α to 5 and

re-estimating all other parameters. As Table 8 shows, credit shocks now produce much smaller

relative movements in employment and consumption across states. When idiosyncratic un-

certainty is low, agents in a state subject to a credit tightening consume out of their liquid

assets, so consumption and employment change little. Similarly, as Table 9 shows, credit shocks

alone generate virtually no employment decline in the aggregate even at our upper bound that

assumes no forward guidance.

We next increase the volatility of taste shocks by lowering α to 2. The model now attributes a

significantly larger role to credit shocks in explaining state-level movements in real variables. As

Table 8 shows, credit shocks generate twice more volatile series for employment and consumption

during the bust compared to the data. The model also ascribes a much more important role to

credit shocks in explaining the aggregate employment decline. Even in the absence of the ZLB,

the model predicts an almost 6 percent decline in employment from 2007 to 2012.

Lower Debt Duration and One-period Debt. So far we have imposed a value of γ, the

parameter determining the decay rate of coupon payments in the mortgage contract, equal

to 0.985, consistent with the maturity of mortgage contracts in the data. One could argue,

however, that the effective duration of mortgages in the data is lower, due to households’ ability
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to refinance their mortgages or take on home equity loans. Here we reduce γ to 0.965, implying

a duration of mortgages about half that in our baseline (6 years versus 13 years) and reestimate

the model. Table 8 shows that credit shocks now generate somewhat larger relative movements

in employment and consumption across U.S. states. Similarly, Table 9 shows that credit shocks

now account for a larger drop in aggregate employment during the recovery. For example, credit

shocks alone predict a 3.3% drop in employment from 2007 to 2012 even in the absence of the

ZLB and a 6.6% drop at the ZLB and in the absence of forward guidance.

We have also considered a version of the model with one-period debt, by setting γ = 0.

To help match the slow-moving debt and house prices, we now assume that the shocks to

credit and preference for housing are themselves AR(1) processes. As Table 8 reports, the

model’s implications for the role of credit shocks in the cross-section are very similar to those in

our Benchmark parameterization. Mechanically, the persistence and volatility of credit shocks

adjusts when we change γ so as to match the comovement of credit and real variables in the

data, with little consequence for the behavior of other variables. At the aggregate-level, as Table

9 shows, the implications of credit shocks over the 2007 to 2010 period are unchanged compared

to our baseline estimates. However, with one-period debt, credit shocks are more important

over the 2007 to 2012 period.

Lower Labor Elasticity. In our baseline estimation, we assigned a value of this elasticity, ψ,

equal to 21, following Christiano et al. (2005). This parameter acts like a real rigidity, in that it

prevents reset wages from responding too much to a given shock. Here we reduce this parameter

to 5, and re-estimate all other parameters of the model. As we report in the Appendix, the

estimation now favors an even greater degree of nominal wage and price stickiness to compensate

for the removal of the real rigidity. As Tables 8 and 9 show, the model’s implications for the

importance of credit shocks in both the cross-section and the aggregate are virtually unchanged.

Construction Sector. In our baseline model, we assumed that the housing stock is in fixed

supply and for consistency have removed construction employment from the state and aggregate

data. Here we introduce a construction sector and add construction employment as an additional

observable in the estimation. We assume that the housing stock evolves according to

ht+1(s) = (1− δh)ht(s) + yHt (s),
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where δh is the rate at which housing depreciates and yHt (s) is housing investment, produced

with a decreasing returns technology that uses a construction employment, nHt (s),

yHt (s) = zHt (s)
(
nHt (s)

)χ
,

where zHt (s) is the productivity of the construction sector on island s. The problem of a firm

in the the construction sector is to maximize profits, given by

et(s)z
H
t (s)

(
nHt (s)

)χ − wt(s)nHt (s)− wt(s)
ξ

2

(
nHt (s)− n̄H

)2
,

where the last term is an adjustment cost that capture frictions that prevent the movement of

labor across sectors.

We set χ = 0.37 as in Garriga and Hedlund (2020) and δh = 0.012 to match the 4.9% share

of construction employment in total employment. We estimate the process for zHt (s) and the

other parameters of the model using state and aggregate data on construction employment, in

addition to the original variables. As we show in the Appendix, our posterior estimates of the

structural parameters are very similar to those in the baseline model. As Table 8 shows, credit

shocks now explain a smaller fraction, approximately one-third, of the variation in consumption

and non-construction employment across states. As Table 9 shows, the contribution of credit

shocks to the drop in aggregate non-construction employment declines as well compared to our

baseline estimates.

Heterogeneous Housing Elasticities. Motivated by the evidence in Mian and Sufi (2014)

that individual states respond differentially to aggregate credit shocks due to heterogeneity in

housing supply elasticities, we allow for such heterogeneity in our model. Owing to the com-

putational complexity of integrating state and aggregate-level data in computing the likelihood

function, here we are only able to use state-level data to conduct inference. We separate states

in the U.S. into three equally-sized groups depending on how closely household debt in a given

state comoves with household debt in the aggregate. We then calculate changes in all state-level

variables relative to the average within each group and allow the housing supply elasticity ξ

to vary across groups in an attempt to isolate the state-specific shocks from heterogeneity in

elasticities. Table 8 shows that the model produces smaller fluctuations in employment in re-

sponse to state-specific credit shocks during the boom but its implications for consumption and

the relative importance of credit shocks in explaining the drop in employment and consumption

during the bust is similar to our baseline model with ex-ante identical states.
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Government Spending. A crucial component of the government’s response to the Great

Recession was fiscal policy, which we have so far abstracted from. Here, we allow for changes

in government spending both at the state-level and in the aggregate and argue that our results

are robust to this modification. Specifically, we now assume that the final good in each state

is used for both consumption and government spending, with government spending following

an AR(1) process subject to exogenous state-specific and aggregate shocks. We augment the

estimation with state and aggregate-level data on government spending. As Table 8 shows,

credit shocks imply larger movements in employment and consumption across states compared

to our baseline estimates. In contrast, as Table 9 shows, the model’s aggregate implications are

similar to our baseline.

Option to Default. We have also considered an alternative model in which households have

the option to default on their mortgages and fluctuations in household credit are driven by credit

supply shocks as opposed to changes in LTV limits. We assume that mortgages are one-period

contracts here, to avoid the multiplicity of equilibria that arise in versions of this model with

long-term debt.

Specifically, we follow Landvoigt (2017) and Faria-e-Castro (2018) in assuming that in addi-

tion to idiosyncratic preference shocks, individual household members experience shocks to the

quality of the houses they own, ωit. Each member has housing wealth ωitetht and is responsible

for an equal share of the family’s debt bt. The member has the option to default on its debt

and does so whenever the value of its home is less than the amount owed, ωitetht < bt. We

also assume that financial intermediaries face an ad-valorem transaction cost τt of issuing new

loans. Letting ∆t denote the spread between the discount rate and the rate of time preference,

perfect competition between financial intermediaries drives their expected profits to zero, which

gives the following debt-elastic schedule for the price of debt that incorporates the probability

of default:

qt =
1 + ∆t

1 + (1 + ∆t) τt
βEt

λt+1

λt

(
1−G (ω̂t+1) +

θ

ω̂t+1

∫ ω̂t+1

0

ωdG (ω)

)
,

where qt is the price of one unit of mortgage debt, G(ω) = (ω/ω̄)χ is the Beta distribution of

housing quality shocks, which we assume are i.i.d, θ is the fraction of the housing stock that

the lender can recover upon default, and

ω̂t =
bt
etht

is the loan-to-value ratio which determines the cutoff quality below which the agent defaults.
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Though the household does not face an explicit borrowing limit, it recognizes that borrowing

more entails a larger spread between the interest rate on mortgages and the return on liquid

assets. Its optimal choice of debt therefore satisfies

qt = βEt
λt+1

λt

[
1−

(
1− χ

(
1− θ

ω̄

)
1 + ∆t

1 + (1 + ∆t) τt

)(
ω̂t+1

ω̄

)χ]
.

This expression implies that household debt decreases with the transaction cost τt which gen-

erates a spread between mortgage rates and the liquid rate of return even in the absence of

default. We refer to changes in τt as credit supply shocks.

We estimate this model using the same approach as earlier. Though we do not explicitly use

data on default rates in our estimation, we show in the Appendix that the model matches the

time-series of default rates during the boom and the bust cycle well. As Table 8 shows, shocks

to τt and housing preferences generate smaller movements in employment and consumption in

the cross-section compared to our baseline, with credit shocks contributing about 30% and 24%

of the relative variation in employment during the boom and bust, respectively. As Table 9

shows, the model’s aggregate implications are similar to those of our baseline model.

Estimated Taylor Rule. In our baseline estimates we used the parameters of the Taylor rule

estimated by Justiniano et al. (2011) using pre-Great Recession data. We have also estimated

these policy parameters ourselves using a longer sample inclusive of the 2009 to 2015 period. As

reported in the Appendix, our estimates of the Taylor Rule are similar to those of Justiniano

et al. (2011), so our model’s implications are largely unchanged.

6 Conclusions

A popular account of the U.S. Great Recession is that declines in households’ ability to borrow

led to a reduction in consumption and employment due to price rigidities and constraints on

monetary policy. This view is motivated, in part, by the observation that employment co-moves

strongly with changes in household debt in the cross-section of U.S. regions. This paper asks:

what are the aggregate implications of these regional correlations?

We develop a model that captures this view by introducing a role for credit in alleviating

household liquidity constraints. The more uncertain households are about their individual

liquidity needs, the stronger their precautionary savings motive is and the more sensitive their

consumption is to credit shocks. Aggregating across households implies that the natural interest

rate fluctuates more in response to changes in credit limits when idiosyncratic uncertainty is
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higher. We use both state-level and aggregate data on the comovement between consumption

and household credit to identify the parameter governing the strength of the precautionary

savings motive and thus the sensitivity of macroeconomic variables to credit shocks.

To make full-information Bayesian estimation feasible, we propose a novel methodology that

exploits the structure of the model and identifies parameters from the relative variation of state-

level variables, in addition to fluctuations in the aggregate. Our approach allows us to efficiently

calculate the likelihood function in an economy with a large number of aggregate and regional

state variables and with non-linear dynamics caused by the ZLB constraint on monetary policy.

Our estimates imply that credit shocks account for about 40% of the differential rise and fall

in state-level employment and consumption during the boom and bust years of the past decade.

In contrast, credit shocks alone generate modest movements in aggregate employment from 2007

to 2010, about one-fifth of the observed decline, even though monetary policy was constrained

by the ZLB. This result reflects the gradual nature of household deleveraging, which caused a

gradual decline in the natural interest rate.

The persistent nature of household deleveraging implies, however, that credit shocks became

more important over time as the quantity of household debt continued to decline and the natural

rate fell even further. Our estimates suggest that credit shocks account for a sizable fraction of

the employment gap in 2012. The tightening in household-level credit limits thus helps account

for the slow recovery of employment in the aftermath of the Great Recession.

A caveat is in order. We have focused on the household leverage view of the Great Recession

and have abstracted from other forces, such as constraints on financial intermediaries, that

played an important role during the acute phase of the crisis. A limitation of our approach is

that we cannot estimate the interactions between household credit risk and the net worth of

intermediaries. Though beyond the scope of this paper, explicitly modeling such interactions

is an important area for future research. In the U.S. this played an important role at the

aggregate level, and a more limited one across regions. In Europe, by contrast, the interaction

of credit risk and financial intermediation created strong regional dynamics as sovereign and

financial spreads widened and inter-state banking liquidity provision collapsed – at least until

the establishment of the banking union in 2012.
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Gilchrist, Simon and Egon Zakraǰsek, “Credit Spreads and Business Cycle Fluctuations,”
American Economic Review, 2012, 102 (4), 1692–1720.

Gourinchas, Pierre-Olivier, Thomas Philippon, and Dimitri Vayanos, “The Analytics
of the Greek Crisis,” in “NBER Macroeconomics Annual 2016, Volume 31” NBER Chapters,
National Bureau of Economic Research, Inc, 2016.

Guerrieri, Luca and Matteo Iacoviello, “OccBin: A Toolkit for Solving Dynamic Models
with Occasionally Binding Constraints Easily,” Journal of Monetary Economics, 2015, 70,
22–38.

and , “Collateral Constraints and Macroeconomic Asymmetries,” Journal of Monetary
Economics, 2017, 90, 28–49.

Guerrieri, Veronica and Guido Lorenzoni, “Credit Crises, Precautionary Savings, and the
Liquidity Trap*,” The Quarterly Journal of Economics, 03 2017, 132 (3), 1427–1467.

48



Hatchondo, Juan Carlos and Leonardo Martinez, “Long-duration Bonds and Sovereign
Defaults,” Journal of International Economics, 2009, 79 (1), 117–125.

Iacoviello, Matteo, “House Prices, Borrowing Constraints, and Monetary Policy in the Busi-
ness Cycle,” American Economic Review, 2005, 95 (3), 739–764.

Jones, Callum, “Unanticipated Shocks and Forward Guidance at the ZLB,” 2017.

Justiniano, Alejandro, Giorgio E Primiceri, and Andrea Tambalotti, “Household
Leveraging and Deleveraging,” Review of Economic Dynamics, 2015, 18 (1), 3–20.

, , and , “Credit Supply and the Housing Boom,” Journal of Political Economy, 2019,
127 (3), 1317–1350.

, Giorgio Primiceri, and Andrea Tambalotti, “Investment Shocks and the Relative Price
of Investment,” Review of Economic Dynamics, 2011, 14 (1), 101–121.

Kaplan, Greg and Giovanni L Violante, “A Model of the Consumption Response to Fiscal
Stimulus Payments,” Econometrica, 2014, 82 (4), 1199–1239.

, Kurt Mitman, and Giovanni L Violante, “The Housing Boom and Bust: Model Meets
Evidence,” Journal of Political Economy, 2020, 128 (9), 3285–3345.

Kehoe, Patrick, Virgiliu Midrigan, and Elena Pastorino, “Debt Constraints and the
Labor Wedge,” American Economic Review Papers & Proceedings, 2016, 106 (5), 548–53.

Kiyotaki, Nobuhiro, Alexander Michaelides, and Kalin Nikolov, “Winners and Losers
in Housing Markets,” Journal of Money, Credit and Banking, 2011, 43 (2-3), 255–296.

and John Moore, “Credit Cycles,” Journal of Political Economy, 1997, 105 (2), 211–248.

and , “Liquidity, Business Cycles, and Monetary Policy,” Journal of Political Economy,
2019, 127 (6), 2926 – 2966.

Kulish, Mariano and Adrian Pagan, “Estimation and Solution of Models with Expectations
and Structural Changes,” Journal of Applied Econometrics, 2017, 32 (2), 255–274.

Landvoigt, Tim, “Housing Demand During the Boom: The Role of Expectations and Credit
Constraints,” The Review of Financial Studies, 2017, 30 (6), 1865–1902.

, Monika Piazzesi, and Martin Schneider, “The Housing Market(s) of San Diego,”
American Economic Review, 2015, 105 (4), 1371–1407.

Lepetyuk, Vadym, Lilia Maliar, and Serguei Maliar, “Should Central Banks Worry
About Nonlinearities of their Large-scale Macroeconomic Models?,” 2017. Bank of Canada
WP.

Lucas, Robert E., “Liquidity and Interest Rates,” Journal of Economic Theory, 1990, 50 (2),
237–264.

and Nancy Stokey, “Liquidity Crises,” Manuscript, University of Chicago, 2011.

49



Lustig, Hanno N and Stijn G Van Nieuwerburgh, “Housing Collateral, Consumption
Insurance, and Risk Premia: An Empirical Perspective,” The Journal of Finance, 2005, 60
(3), 1167–1219.

Mackowiak, Bartosz and Mirko Wiederholt, “Optimal Sticky Prices Under Rational Inat-
tention,” American Economic Review, 2009, 99 (3), 769–803.

Martin, Philippe and Thomas Philippon, “Inspecting the Mechanism: Leverage and the
Great Recession in the Eurozone,” 2014. Working Paper NYU.

Mendoza, Enrique G, “Sudden Stops, Financial Crises, and Leverage,” American Economic
Review, 2010, 100 (5), 1941–66.

Mian, Atif and Amir Sufi, “House prices, home equity-based borrowing, and the US house-
hold leverage crisis,” American Economic Review, 2011, 101 (5), 2132–56.

and , “What explains the 2007–2009 drop in employment?,” Econometrica, 2014, 82 (6),
2197–2223.

, Kamalesh Rao, and Amir Sufi, “Household balance sheets, consumption, and the eco-
nomic slump,” The Quarterly Journal of Economics, 2013, 128 (4), 1687–1726.

Nakamura, Emi and Jon Steinsson, “Fiscal Stimulus in a Monetary Union: Evidence from
US Regions,” American Economic Review, 2014, 104 (3), 753–92.

Negro, Marco Del, Marc P Giannoni, and Frank Schorfheide, “Inflation in the Great
Recession and New Keynesian Models,” American Economic Journal: Macroeconomics, 2015,
7 (1), 168–96.

Rocheteau, Guillaume, Pierre-Olivier Weill, and Tsz-Nga Wong, “A tractable model
of monetary exchange with ex post heterogeneity,” Theoretical Economics, 2018, 13 (3), 1369–
1423.

Shi, Shouyong, “Liquidity, Assets and Business Cycles,” Journal of Monetary Economics,
2015, 70, 116 – 132.

Simonovska, Ina and Michael E Waugh, “The Elasticity of Trade: Estimates and Evi-
dence,” Journal of International Economics, 2014, 92 (1), 34–50.

Smets, Frank and Rafael Wouters, “Shocks and Frictions in US Business Cycles: A
Bayesian DSGE Approach,” American Economic Review, 2007, 97 (3), 586–606.

Werning, Ivan, “Managing a Liquidity Trap: Monetary and Fiscal Policy,” 2011. NBER WP
17344.

50


	Introduction
	Model
	Households
	Optimal Savings Choice
	Optimal Debt and Housing Choice
	Technology
	Monetary Policy
	Asset Market
	The Workings of the Model
	Solution Method

	Estimation
	Assigned Parameters
	Estimation Procedure
	The Data
	The Likelihood Function

	Parameter Estimates
	Identification of 
	Separating Credit Shocks from Other Household Demand Shocks
	Variance Decompositions
	Additional Implications

	Credit Shocks in the Great Recession
	Role of Credit Shocks at the State Level
	Role of Credit Shocks at the Aggregate Level

	Robustness
	Conclusions

